Probes for constituents of composite dark matter

K.M. Belostky1, M.Yu. Khlopov2, K.I. Shibaev3

Abstract

The nonbaryonic dark matter of the Universe can consist of new stable charged particles, bound in heavy ätoms" by the ordinary Coulomb interaction. If stable particles O- with charge -2 are in excess over their antiparticles (with charge +2) and there are no stable particles with charges +1 and -1, the primordial helium, formed in Big Bang Nucleosynthesis, captures all O- in neutral ätoms" of O-helium (OHe), playing the role of specific nuclear interacting dark matter. O-helium dark atoms can provide a solution for the puzzles of dark matter searches. A successful development of composite dark matter scenarios appeals to an experimental search for charged constituents of dark atoms. Estimates of production cross section of such particles at LHC are presented, and experimental signatures of new stable quarks are outlined.

References

  1. A. Pukhov et al, CompHEP - a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User's manual for version 3.3, INP MSU report 98-41/542; hep-ph/9908288. Home page: http://comphep.sinp.msu.ru
  2. E. Boos et al, [CompHEP Collaboration], CompHEP 4.4: Automatic computations from Lagrangians to events, Nucl. Instrum. Meth. A 534, 250 (2004); hep-ph/0403113.
  3. T. Sjostrand et al., Computer Phys. Commun. 135, 238 (2001).
  4. K. M. Belotsky et al., Phys. Rev. D 68, 054027 (2003).
  5. K. M. Belotsky et al., Phys. Atom. Nucl. 71, 147 (2008).
  6. K. M. Belotsky, M. Yu. Khlopov, and K. I. Shibaev, Grav. Cosmol. Suppl. 6, 140 (2000).
  7. K. M. Belotsky et al., Grav. Cosmol. 11, 16 (2005).
  8. V. A. Novikov et al., Phys. Lett. B 529, 111 (2002); Sov. Phys. JETPL 76, 119 (2002).
  9. M. Maltoni et al., Phys. Lett. B 476, 107 (2000).
  10. V. A. Ilyin et al., Phys. Lett. B 503, 126 (2001).
  11. G. D. Mack et al, Phys. Rev. D 76, 043523 (2007).
  12. D. Javorsek et al, Phys. Rev.L 87, 231804 (2001).
  13. S. Mitra, Phys. Rev. D 70, 103517 (2004).
  14. S. Wolfram, Phys. Lett. B 82, 65 (1979).
  15. G. D. Starkman et al, Phys. Rev. D 41, 3594 (1990).
  16. G. Zaharijas and G. R. Farrar, Phys. Rev. D 72, 083502 (2005).
  17. C. B. Dover et al, Phys. Rev.L 42, 1117 (1979).
  18. P. C. McGuire and P. J. Steinhardt, Cracking open the window for strongly interacting massive particles as the halo dark matter, astro-ph/0105567.
  19. B. D. Wandelt et al., Self-interacting dark matter, astro-ph/0006344.
  20. M. Y. Khlopov, A. G. Mayorov, and E. Y. Soldatov, Int. J. Mod. Phys. D 19, 1385 (2010).
  21. M. Y. Khlopov, The puzzles of dark matter searches, AIP Conf. Proc. 1241, 388 (2010).
  22. M. Y. Khlopov and C. Kouvaris, Phys. Rev. D 78, 065040 (2008).
  23. N. S. Mankoc Borstnik, Int. J. Theor. Phys. 40, 315 (2001).
  24. G. Bregar, M. Breskvar, D. Lukman, and N. S. Mankoc Borstnik, New J. of Phys. 10, 093002 (2008).
  25. N. S. Mankoc Borstnik, Mod. Phys. Lett. A 10, 587 (1995).
  26. A. Borstnik Bracic and N. S. Mankoc Borstnik, Phys. Rev. D 74, 073013 (2006).
  27. N. S. Mankoc Borstnik, Bled Workshops in Physics 11, 105 (2010).
  28. K. Belotsky et al, Grav. Cosmol. 12, 1 (2006).
  29. K. Belotsky, M. Yu. Khlopov,and K. I. Shibaev, Stable quarks of the 4th family? in: Eds. N. L. Watson and T. M. Grant, The Physics of Quarks: New Research (Horizons in World Physics, V. 265), NOVA Publishers, Hauppauge NY, 2009, PP.19-47; arXiv: 0806.1067.
  30. K. Belotsky et al, Stable matter of 4th generation: Hidden in the Universe and close to detection?, astro-ph/0602261.
  31. M. Yu. Khlopov, Sov. Phys. JETPL 83, 1 (2006).
  32. K. M. Belotsky et al, Grav. Cosmol. 11, 3 (2005).
  33. S. B. Gudnason et al, Phys. Rev. D 74, 095008 (2006).
  34. S. B. Gudnason et al, Phys. Rev. D 73, 115003 (2006).
  35. D. D. Dietrich et al, Phys. Rev. D 73, 037701 (2006).
  36. D. D. Dietrich et al, Phys. Rev. D 72, 055001 (2005).
  37. D. K. Hong et al, Phys. Lett. B 597, 89 (2004).
  38. F. Sannino and K. Tuominen, Phys. Rev. D 71, 051901 (2005).
  39. M. Yu. Khlopov and C. Kouvaris, Phys. Rev. D 77, 065002 (2008)
  40. A. Connes, Noncommutative Geometry (Academic Press, London and San Diego, 1994).
  41. D. Fargion et al, Class. Quantum Grav. 23, 7305 (2006); M. Yu. Khlopov and C. A. Stephan, astro-ph/0603187.
  42. C. A. Stephan, Almost-commutative geometries beyond the standard model, hep-th/0509213.
  43. M. Yu. Khlopov, New symmetries in microphysics, new stable forms of matter around us, astro-ph/0607048.
  44. D. Fargion and M. Khlopov, Tera-leptons shadows over sinister Universe, hep-ph/0507087.
  45. S. L. Glashow, A sinister extension of the standard model to SU(3) x SU(2) x SU(2) x U(1), hep-ph/0504287.
  46. M. Y. Khlopov, Mod. Phys. Lett. A 26, 2823 (2011).
  47. M. Y. Khlopov, A. G. Mayorov, and E. Y. Soldatov, Bled Workshops in Physics 11, 73 (2010).
  48. M. Yu. Khlopov, A. G. Mayorov, and E. Y. Soldatov, J. Phys. Conf. Ser. 309, 012013 (2011).
  49. M. Aliev et al., Comput. Phys. Commun. 182. 1034-1046 (2011); arXiv: 1007.1327.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page