Thermodynamics of horizons in a globally regular spherically symmetric spacetime

I. Dymnikova1

Abstract

We address the question of thermodynamics of horizons in a globally regular spherically symmetric spacetime which is asymptotically de Sitter as r 0 and as r. A source term in the Einstein equations smoothly connects two de Sitter vacua with different values of the cosmological constant and corresponds to an anisotropic vacuum fluid defined by symmetry of its stress-energy tensor, which is invariant under radial boosts. In the most general case, the spacetime has three horizons, an internal one, ra, which is a cosmological horizon for an observer in the R-region 0 r ra; the horizon rb > ra which is the boundary of the T-region ra < r < rb seen as a black or white hole by an observer in the R-region rb < r < rc, where rc is his cosmological horizon. We present a detailed analysis of the thermodynamics of horizons using the Padmanabhan approach relevant to the case of non-zero pressures.

References

  1. G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977).
  2. F.Kottler, Encykl. Math. Wiss. 22 a, 231 (1922).
  3. E. Trefftz, Math. Ann. 86, 317 (1922).
  4. H. Nariai, Sci. Rep. Tohoku Univ. Ser. I 35, 62 (1951).
  5. Feng-Li Lin and Chopin Soo, Class. Quant. Grav. 16, 551 (1999).
  6. R. J. Adler, P. Chen, and D. I. Santiago, Gen. Rel. Grav. 33, 2101 (2001).
  7. L. Susskind, J. Math. Phys. 36, 6377 (1995).
  8. C. Teitelboim, Gravitational thermodynamics of Schwarzschild-de Sitter space, in: Strings and Gravity. Tying the Forces Together, Proceedings of the 5th Francqui Colloquium on Strings and Gravity, Brussels, Belgium, 19-21 October 2001 (De Boeck & Larcier: Brussels, 2003); hep-th/0203258.
  9. R. Aros, Phys. Rev. D 77, 104013 (2008).
  10. I. Dymnikova, in: Proceedings of the Invisible Universe International Conference, Paris, France, 29 June - 3 July 2009 (AIP: New York, NY, USA, 2010).
  11. I. Dymnikova, Gen. Rel. Grav. 24, 235 (1992).
  12. I.G. Dymnikova, Int. J. Mod. Phys. D 5, 529 (1996).
  13. I. Dymnikova, Phys. Lett. B 472, 33 (2000).
  14. I. Dymnikova, Class. Quantum Grav. 19, 725 (2002).
  15. I. Dymnikova, Int. J. Mod. Phys. D 12, 1015 (2003).
  16. Y.S. Myung, Y.-W. Kim, and Y.-J. Park, Phys. Lett. B 656, 221 (2007).
  17. I. Dymnikova and M. Korpusik, Phys. Lett. B 685, 12 (2010).
  18. T. Padmanabhan, Class. Quantum Grav. 19, 5387 (2002).
  19. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1974); ibid., D 9, 3292 (1974).
  20. E. B. Gliner, Sov. Phys. JETP 22, 378 (1966).
  21. L. D. Landau and E.M. Lifshitz, Classical Theory of Fields (Pergamon Press, 1975).
  22. I. Dymnikova and E. Galaktionov, Phys. Lett. B 645, 358 (2007).
  23. I. Dymnikova and B. Soltysek, Gen. Rel. Grav. 30, 1775 (1998).
  24. K. A. Bronnikov, A. Dobosz, and I. Dymnikova, Class. Quantum Grav. 20, 379 (2003).
  25. A. D. Sakharov, Sov. Phys. JETP 22, 241 (1966).
  26. E. Poisson and W. Israel, Class. Quant. Grav. 5, L201 (1988).
  27. A. Perez, Class. Quant. Grav. 20, R43 (2003).
  28. C. Rovelli, Quantum Gravity (Cambridge Univ. Press, 2004).
  29. L. Modesto, Proc. of the XVII SIGRAV Conf., Turin, 2006; hep-th/0701239.
  30. A. Strominger, JHEP 0110, 034 (2001); 0111, 049 (2001).
  31. K. Bronnikov and I. Dymnikova, Class. Quant. Grav. 24, 5803 (2007).
  32. I. Dymnikova and M. Korpusik, to appear in Entropy (2011).
  33. J. H. McGibbon, Nature 329, 308 (1987).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page