De sitter relativity: a natural scenario for an evolving Lambda

J.P. Beltran Almeida1, C.S.O. Mayor2 and J.G. Pereira3


In de Sitter special relativity, spacetime translations are replaced by a combination of translations and proper conformal transformations. As a consequence, the energy-momentum current is replaced by a combination of ordinary energy-momentum and proper conformal currents. Whereas the ordinary energy-momentum tensor remains to be a dynamic source of the spacetime curvature, the proper conformal current appears as a kinematic source of L. The de Sitter special relativity, therefore, allows for a new interpretation of dark energy as an entity encoded in the kinematic group of spacetime. Furthermore, since ordinary energy is allowed to transform into dark energy and vice versa, it provides a natural scenario for an evolving cosmological term. A qualitative discussion on how a L-evolving universe would be is presented.


  1. R. Aldrovandi and J. G. Pereira, Int. J. Mod. Phys. D 17, 2485 (2008) [gr-qc/0805.2584].
  2. A. G. Riess et al., Ap. J. 116, 1009 (1998).
  3. S. Perlmutter et al., Ap. J. 517, 565 (1999).
  4. P. de Bernardis et al., Nature 404, 955 (2000).
  5. S. Hanany et al., Ap. J. Letters 545, 5 (2000).
  6. T. Padmanabhan, Class. Quant. Grav. 4, L107 (1987).
  7. G. Amelino-Camelia, Lect. Not. Phys. 541, 1 (2000) [gr-qc/9910089].
  8. J. Magueijo and L. Smolin, Phys. Rev. Lett. 88, 190403 (2002) [hep-th/0112090].
  9. G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002) [gr-qc/0012051].
  10. G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 1643 (2002) [gr-qc/0210063]; Nature 418, 34 (2002) [gr-qc/0207049].
  11. J. D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1998).
  12. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).
  13. R. Aldrovandi, J. P. Beltran Almeida and, J. G. Pereira, Class. Quantum Grav. 24, 1385 (2007) [gr-qc/0606122].
  14. H. Y. Guo, C. G. Huang, Y. Tian, H. T. Wu, and B. Zhou, Class. Quantum Grav. 24, 4009 (2007) [gr-qc/0703078].
  15. S. Cacciatori, V. Gorini, A. Kamenshchik, and U. Moschella, Class. Quantum Grav. 25, 075008 (2008) [arXiv: 0710.0315]; Ann. Phys. (Berlin) 17, 728 (2008) [arXiv: 0807.3009].
  16. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973).
  17. F. Gursey, in Group Theoretical Concepts and Methods in Elementary Particle Physics, ed. by F. Gursey, Istanbul Summer School of Theoretical Physics (Gordon and Breach, New York, 1962).
  18. R. Aldrovandi and J. G. Pereira, An Introduction to Geometrical Physics (World Scientific, Singapore, 1995).
  19. C. G. Callan, S. Coleman, and R. Jackiw, Ann. Phys. (NY) 59, 42 (1970).
  20. J. Dixmier, Bull. Soc. Math. Franc. 89, 9 (1961).
  21. R. Aldrovandi and J. G. Pereira, Found. Phys. 39, 1 (2009) [arXiv: 0711.2274].
  22. F. Mansouri, Phys. Lett. B 538, 239 (2002) [hep-th/0203150].
  23. R. Aldrovandi, J. P. Beltran Almeida and J. G. Pereira, J. Geom. Phys 56, 1042 (2006) [gr-qc/0403099].
  24. R. Aldrovandi and J. G. Pereira, A Second Poincare Group, in Topics in Theoretical Physics II: Festschrift for Abraham H. Zimerman, ed. by H. Aratyn et. al. (Ed. Fundac ao Instituto de Fisica Teorica, S ao Paulo, 1998) [gr-qc/9809061].
  25. G. 't Hooft, Dimensional Reduction in Quantum Gravity [gr-qc/9310026].
  26. L. Susskind, J. Math. Phys. 36, 6377 (1995) [hep-th/9409089].
  27. G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977).
  28. R. Penrose, Before the Big Bang: an Outrageous New Perspective and Its Implication for Particle Physics, Proceedings of EPAC 2006, Edinburgh, Scotland.
  29. R. Penrose, Cycles of Time: An Extraordinary New View of the Universe (Alfred Knopf, New York, 2011).
For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page