Cosmological models with interacting components and mass-varying neutrinos

Lucas G. Collodel and Gilberto M. Kremer1

Abstract

A model for a homogeneous and isotropic spatially flat Universe, composed of baryons, radiation, neutrinos, dark matter and dark energy is analyzed. We infer that dark energy (assumed to behave as a scalar field) interacts with dark matter (either by the Wetterich model or by the Anderson and Carroll model) and with neutrinos by a model proposed by Brookfield et al.. The latter is understood to have a mass-varying behavior. We show that, for a very softly varying field, both interacting models for dark matter give the same results. The models reproduce the expected red-shift performances of the present behavior of the Universe.

References

  1. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
  2. A. G. Riess et al., Astrophys. J. 560, 49 (2001).
  3. M. S. Turner and A. G. Riess, Astrophys. J. 569, 18 (2002).
  4. J. Tonry et al., Astrophys. J. 594, 1 (2003).
  5. C. Wetterich, Nucl. Phys. B 302, 645 (1988).
  6. C. Wetterich, Astron. Astrophys. 301, 321-328 (1995).
  7. L. Amendola, M. Baldi, and C. Wetterich, Phys. Rev. D 78, 023015 (2008).
  8. G. W. Anderson and S. M. Carroll, arXiv: astro-ph/9711288.
  9. A. W. Brookfield, C. van de Bruck, D. F. Mota, and D. Tocchini-Valentini, Phys. Rev. Lett. 96, 061301 (2006); Phys. Rev. D 73, 083515 (2006).
  10. M. Persic, P. Salucci, and F. Stel, Mon. Not. Roy. Astron. Soc. 281, 27 (1996).
  11. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).
  12. Yu. G. Ignat'ev, J. Sov. Phys. (Izvest. Vuzov) 25, 92 (1982); ibid., 26, 9 (1983); 26, 15 (1983); 26, 19 (1983).
  13. Yu. G. Ignat'ev and R. R. Kuzeev, Ukr. Phys. J. 29, 1021 (1984).
  14. A. D. Dolgov, Phys. Atom. Nucl. 71, 2152-2164 (2008).
  15. J. Lesgourgues and S. Pastor, Phys. Rep. 429, 307-379 (2006).
  16. R. D. Peccei, Phys. Rev. D 71, 023527 (2005).
  17. J. Grande, J. Sola, and H. Stefancic, JCAP 0608, 011 (2006).
  18. J. Grande, A. Pelinson and J. Sola, Phys. Rev. D 79, 043006 (2009).
  19. R. Fardon, A. E. Nelson, and N. Weiner, JCAP 0410, 005 (2004).
  20. G. Y. Chitov, T. August, and T. Kahniashvili, arXiv: 0911.1728.
  21. N. Afshordi, M. Zaldarriaga, and K. Kohri, Phys. Rev. D 72, 065024 (2005).
  22. G. M. Kremer, Gen. Rel. Grav. 39, 965 (2007).
  23. C. Ju-Hua and W. Yong-Jiu, Chinese Phys. B 19, 010401 (2010).
  24. R. Horvat, JCAP 0601, 015 (2006).
  25. J. B. Binder and G. M. Kremer, Braz. J. Phys. 35 1038 (2005).
  26. J. B. Binder and G. M. Kremer, Gen. Rel. Grav. 38 857 (2006).
  27. Yu. G. Ignatyev and R. F. Miftakhov, Grav. Cosmol. 12, 179 (2006); ibid., 17, 71 (2011).
  28. A. Liddle, An Introduction to Modern Cosmology (Wiley, Chichester, 2003).
  29. J. M. Virey et al., Phys. Rev. D 72, 061302 (2005).
  30. A. G. Riess et al., Astrophys. J. 607, 665 (2004).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page