Relativistic modelling of a superdense star containing a charged perfect fluid

Neeraj Pant and Shahab Faruqi1

Abstract

The paper presents a variety of classes of interior solutions of the Einstein-Maxwell field equations for a static, spherically symmetric distribution of a charged fluid of well-behaved nature. They describe perfect fluid balls with positive finite central pressure and density; their ratio is less than one (c = 1), and the causality condition is obeyed at the center. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is a monotonic decrease, in a physically appealing manner. A certain class of these well-behaved solutions is studied extensively. For this class, the mass of the configuration is maximized. In particular, for a surface density rb = 2×1014 g/cm3 we obtain a star with a maximum mass of 3.47 Modot, a radius of 15.21 km and the central redshift 1.014385.

References

  1. J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).
  2. H. Bondi, Mon. Not. Roy. Astron. Soc. 139, 499 (1969).
  3. A. Mitra, Phys. Lett. B 685 (1), 8 (2010).
  4. A. Mitra, Phys. Rev. D 74 (2), 024010 (2006).
  5. A. Mitra, Mon. Not. Roy. Astoron. Soc. 369, 492 (2006).
  6. A. Mitra and N. K. Glendenning, Mon. Not. Roy. Astron. Soc. 404, L 50 (2010).
  7. N. Pant, R. N. Mehta, and B. C. Tewari, Astrophys. Sp. Sc. 327, 279 (2010).
  8. N. Pant and B. C. Tewari, Astroph. Space Sci. 331, 645 (2010).
  9. F. Hoyle and W. A. Fowler, Nature 197, 533 (1963).
  10. A. Einstein, Ann. Math. 40, 922 (1939).
  11. G. Pinheiro and R. Chan, Gen. Rel. Grav. 40, 2149 (2008).
  12. G. Pinheiro and R. Chan, Gen. Rel. Grav. 43, 1451 (2011).
  13. H. Ardavan, and M. H. Partovi, Phys. Rev. D 16, 1664 (1977).
  14. Tsagas, G. Christos, Class. Quant. Grav. 23, 4323 (2006).
  15. G. Pinheiro, arXiv: 1111.4921.
  16. F. de Felice et al, Mon. Not. R. Astron. Soc 277, 17 (1995).
  17. B. V. Ivanov, Phys. Rev. D 65, 104001 (2002).
  18. W. B. Bonnor, Mon. Not. R. Astron. Soc. 137, 239 (1965).
  19. M. S. R. Delgaty and K. Lake, Comp. Phys. Comm. 115, 395, (1998).
  20. N. Pant, Astroph. Space Sci. 331, 633 (2010).
  21. V. Canuto and J. Lodenquai, Phys. Rev. C 12, 2033 (1975).
  22. N. Pant et al., J. Mod. Phys. 2, 1537 (2011).
  23. S. K. Maurya and Y. K. Gupta, Astroph. Space Sci. 332, 481 (2011).
  24. M. J. Pant and Tewari, J. Mod. Phys. 2, 481 (2011).
  25. N. Pant, Astroph. Space Sci. 334, 267 (2011).
  26. R. Adler, J. Math. Phys. 15, 727 (1974).
  27. M. Bejger and P. Haensel, Astron. Astrophys. 396, 917 (2002).
  28. A. Mitra, Astroph. Space Sci. 332 (43) (2011).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page