Gluon matter plasma in the compact star core within a fluid QCD model

C.S. Nugroho1, A.O. Latief2, T.P. Djun3 and L.T. Handoko4

Abstract

The structure of a compact star core filled with gluon matter plasma is investigated within the fluid-like QCD framework. The energy-momentum tensor, density and pressure relevant to gluonic plasma having the nature of a fluid bulk of gluon sea are derived within the model. It is shown that the model provides a new equation of state for the perfect fluid with only a single parameter of fluid distribution, f(x). The results are applied to constructing the equation of state describing the gluonic plasma dominated compact star core. The equations of pressure and density distribution are solved analytically for a small compact star core radius. The phase transition of the plasma near the core surface is also discussed.

References

  1. C. Adler et al. (STAR Collaboration), Phys. Rev. C 66, 034904 (2002).
  2. K. Adeox et al. (PHENIX Collaboration), Nucl. Phys. A 757, 184 (2005).
  3. E. Shuryak, Nucl. Phys. A 774, 387 (2006).
  4. I. Bouras et al., Phys. Rev. Lett. 103, 032301 (2009).
  5. P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2010).
  6. M. G. Alford, K. Rajagopal, T. Schaefer, and A. Schmitt, Rev. Mod. Phys. 80, 1455 (2008). DOI 10.1103/RevModPhys.80.1455
  7. M. Harrison, T. Ludlam, and S. Ozaki, Nucl. Inst. Meth. Phys. Res. A 499, 235 (2003)
  8. D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001).
  9. P. Huovinen et al., Phys. Lett. B 503, 58 (2001)
  10. P. F. Kolb et al., Nucl. Phys. A 696, 197 (2001).
  11. P. F. Kolb and R. Rapp, Phys. Rev. C 67, 044903 (2003).
  12. T. Hirano and K. Tsuda, Phys. Rev. C 66, 054905 (2002).
  13. R. Baier and P. Romatschke, Eur. Phys. J. C 51, 677 (2007).
  14. J. Jowett, LHC Lead Ion Beam Commissioning in LHC Design Report, Tech. rep., CERN (2009).
  15. J. Adams et al., (STAR Collaboration), Phys. Rev. Lett. 91, 172302 (2003).
  16. A. Adare et al., (PHENIX Collaboration), Phys. Rev. Lett. 101, 232301 (2008).
  17. S. Gottlieb, J. Phys. Conf. Ser. 78, 012023 (2007).
  18. P. Petreczky, Europ. Phys. J. Special Topics 155, 1951 (2008).
  19. S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett 91, 182301 (2003).
  20. J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92, 052302 (2004).
  21. B. B. Back et al. (Phobos Collaboration), Phys. Rev. C 72, 051901 (2005).
  22. W. A. Zajc, Nucl. Phys. A 805, 283 (2008).
  23. U. Heinz, Phys. Rev. Lett. 51, 351 (1983).
  24. D. D. Holm and B. A. Kupershmidt, Phys. Rev. D 30, 2557 (1984).
  25. Y. Choquet-Bruhat, J. Math. Phys. 33, 1782 (1992).
  26. J. P. Blaizot and E. Iancu, Nucl. Phys. B 421, 565 (1994).
  27. B. Bistrovic et al., Phys. Rev. D 67, 025013 (2003).
  28. S. M. Mahajan, Phys. Rev. Lett. 90, 035001 (2003).
  29. C. Manuel and S. Mrowczynski, Phys. Rev. D 74, 105003 (2006).
  30. B. A. Bambah, S. M. Mahajan, and C. Mukku, Phys. Rev. Lett. 97, 072301 (2006)
  31. Marmanis, Phys. of Fluid 10, 1428 (1998).
  32. A. Sulaiman, A. Fajarudin, T.P. Djun, and L.T. Handoko, Int. J. Mod. hys. A 24, 3630 (2009).
  33. T. P. Djun and L. T. Handoko, in: Proceeding of the Conference in Honour of Murray Gell-Mann's 80th Birthday: Quantum Mechanics, Elementary Particles, Quantum Cosmology and Complexity (2011), pp. 419-425. DOI 10.1142/9789814335614 0040.
  34. R. C. Tolman, Proc. Nat. Acad. Sci. 20, 169 (1934).
  35. J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page