On collisions with unlimited energies in the vicinity of Kerr and Schwarzschild black hole horizons

A.A. Grib1, Yu.V. Pavlov2 and O.F. Piattella3

Abstract

Two-particle collisions close to the horizon of a rotating non-extremal Kerr black hole and a Schwarzschild black hole are analyzed. For the case of multiple collisions, it is shown that high energy in the center-of-mass frame occurs due to a great relative velocity of two particles and a large Lorentz factor. We analyze the dependence of the relative velocity on the distance to the horizon and calculate the motion time from the point in the accretion disc to the point of scattering with large energy as well as the time of back motion to the Earth. It is shown that they have a reasonable order.

References

  1. A. A. Grib and Yu. V. Pavlov, Mod. Phys. Lett. A 23, 1151 (2008).
  2. The Pierre Auger Collaboration, Science 318, 938 (2007); Astropart. Phys. 34, 314 (2010).
  3. M. Banados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009).
  4. A. A. Grib and Yu. V. Pavlov, Pis'ma v ZhETF 92, 147 (2010) [JETP Lett. 92, 125 (2010)].
  5. A. A. Grib and Yu. V. Pavlov, Astropart. Phys. 34, 581 (2011).
  6. A. A. Grib and Yu. V. Pavlov, On Particle Collisions near Kerr Black Holes, arXiv: 1007.3222.
  7. A. A. Grib and Yu. V. Pavlov, Grav. Cosmol. 17, 42 (2011).
  8. O. B. Zaslavskii, Class. Quantum Grav. 28, 105010 (2011).
  9. O. B. Zaslavskii, Phys. Rev. D 82, 083004 (2010); T. Harada and M. Kimura, Phys. Rev. D 83, 024002 (2011).
  10. O. B. Zaslavskii, Phys. Rev. D 84, 024007 (2011).
  11. V. P. Frolov and I. D. Novikov, Black Hole Physics: Basic Concepts and New Developments (Kluwer Acad. Publ., Dordrecht, 1998).
  12. T. Harada and M. Kimura, Phys. Rev. D 83, 084041 (2011).
  13. M. Banados, B. Hassanain, J. Silk, and S. M. West, Phys. Rev. D 83, 023004 (2011).
  14. E. Berti, V. Cardoso, L. Gualtieri, F. Pretorius and U. Sperhake, Phys. Rev. Lett. 103, 239001 (2009).
  15. T. Jacobson and T. P. Sotiriou, Phys. Rev. Lett. 104, 021101 (2010).
  16. K. S. Thorne, Astrophys. J. 191, 507 (1974).
  17. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1983).
  18. O. B. Zaslavskii, Pis'ma v ZhETF 92 635 (2010) [JETP Lett. 92 571 (2010)].
  19. A. N. Baushev, Int. J. Mod. Phys. D 18, 1195 (2009).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page