Binding energy of the very early universe: Abandoning einstein for a discretized three-torus poset. A proposal on the origin of dark energy

M.R. Khoshbin-e-Khoshnazar1


We formulate seeds of a radical theory. We propose a model discretization of the Universe based on a T3-torus. A suggestion for the discretization of the matter Lagrangian is also given. An attempt ismade to relate the natural Planck units to the parameters of elementary geometric cells. Then, by introducing a many-body method, we speculate on the binding energy in the very early Universe. Finally, we introduce postulates of the model and some effects which we expect from it.


  1. E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesely, 1991).
  2. G.' t Hooft, In: Recent Development in Gravitation (Plenum, 1979).
  3. J. A. Wheeler, Int. J. Theor. Phys. 21, 577 (1982).
  4. L. Bombelli, J. Lee, D. Meyer, and R.D. Sorkin, Phys. Rev. Lett. 59, 521 (1987).
  5. G. Chardin, Dapnia preprint SPP 94-15 (1994).
  6. T. Regge, Nuovo Cim. A 19, 558 (1961).
  7. M. Sh. Yakupov, RussianMathematics 43, 63 (1999); M. Sh. Yakupov. The substantition of formulas for Planck units. In: Petrov Readings. Newest Problems of Field Theory, ed. A. V. Aminova (Kazan, 1998), p. 359 (in Russian).
  8. R. D. Sorkin, Int. J. Theor. Phys 30, 923 (1991).
  9. J. A. Wheeler, Superspace and the Nature of Quantum Geomtrodynamics (Benjamin, 1968).
  10. J. W. Clark and P. Westhaus, Phys. Rev. 141, 833 (1966); M. R. Khoshbin-Khoshnazar, Eur. Phys. J. A 14, 207 (2002).
  11. A. P. Balachandran, G. Bimonte, E. Erclossi, and P. Teotino-Sorbinho, Nucl. Phys. B 418, 477 (1994).
  12. M. Nakahara, Geometry, Topology and Physics (Adham Hilger, 1990).
  13. J. Hartle and S. W. Hawking, Phys. Rev. D 28, 2690 (1983); S. W. Hawking, R. Laflamme and G.W. Lyons, Phys. Rev. D 47, 5342 (1993).
  14. A. L. Efros, Physics and Geometry of Disorder Percolatin Theory (Mir Publishers, 1987).
  15. J. R. Munkres, Topology: a First Course (Printice-Hall, 1975).
  16. A. P. Balachandran, G. Bimonte, E. Ercolessi, G. Landi, F. Lizzi, G. Sparano, and P. Teotonio-Sorbinho, Nucl. Phys. C (Proc. Suppl) 37, 20 (1995).
  17. J. M. C. Fell and R. S. Doran, Representations of *Algebra, Locally compact Groups and Banach* Algebraic Bundles (Academic Press, 1988).
  18. A. Connes, Non-Commutative Geometry (Academic Press, 1994).
  19. T. Dereli and R.W. Tucker, Class. Quantum Grav. 10, 365 (1993).
  20. R. P. Dolan, Physics Essay 19, 370 (2006).
  21. L. Smolin, Loops'05 conference,
  22. D. P. Rideout and R. D. Sorkin, qr-qc/9904062; Xavier Martin et al., qr-qc/0403085, and some other Sorkin's works with Fay Dowker.
  23. J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978).
  24. For an interesting review of some other approaches to quantum gravity in four dimentions see: R. Loll, Discrete Approaches to Quantum Gravity in Four Dimensions, qr-qc/9805049.
  25. M. Bojowald, Phys. Rev. Lett. 10, 221301 (2008).
  26. S. R. Hamerrof and R. Penrose, Journal of Consciousness Studies 3, 36 (1996).
  27. R. Penrose, Gen. Rel. Grav. 28, 581 (1996).
  28. M. R. Khoshbin-e-Khoshnazar, NeuroQuantology. 5, 182 (2007); see also: M. R. Khoshbn-e-Khoshnazar, Why I'm not an ‘Orch OR' ian? In Quantum Mind Conference, 2007, Consciousness Research Abstracts, published by Journal of Consciousness Studies, p. 96–97.
  29. R. Penrose, Nature 433, 257 (2005).
  30. M. Planck, Theory of Heat Radiation (Dover, N.Y., 1959), p. 174.
  31. R. L. Wadlinger and G. Hunter, Physics Teacher 26, 528 (1998).
For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page