Variations of α and G from nonlinear multidimensional gravity

K.A. Bronnikov, M.V. Skvortsova1, K.A. Bronnikov, M.V. Skvortsova2

Abstract

To explain the recently reported large-scale spatial variations of the fine structure constant α, we apply some models of curvature-nonlinear multidimensional gravity. Under the reasonable assumption of slow changes of all quantities as compared with the Planck scale, the original theory reduces to a multiscalar field theory in four dimensions. On this basis, we consider different variants of isotropic cosmological models in both the Einstein and Jordan conformal frames. One of the models turns out to be equally viable in both frames, but in the Jordan frame themodel predicts simultaneous variations of α and the gravitational constant G, equal in magnitude. Large-scale small inhomogeneous perturbations of these models allow for explaining the observed distribution of α values.

References

  1. J. K. Webb et al., Further evidence for cosmological evolution of the fine structure constant. Phys. Rev. Lett. 87, 091301 (2001).
  2. J. K. Webb et al., Evidence for spatial variation of the fine structure constant. Phys. Rev. Lett. 107, 191101 (2011); ArXiv: 1008.3907.
  3. J. C. Berengut and V. V. Flambaum, Astronomical and laboratory searches for space-time variation of fundamental constants. J. Phys. Conf. Ser. 264, 012010 (2011); Arxiv: 1009.3693.
  4. T. Rosenband et al., Observation of the 1S0 > 3P0 Clock Transition in27Al+. Phys. Rev. Lett. 98, 220801 (2007).
  5. A. I. Shlyakhter, Direct test of the constancy of fundamental nuclear constants. Nature 260, 340 (1976).
  6. Y. Fujii et al., The nuclear interaction at Oklo 2 billion years ago. Nucl. Phys. B573. 377 (2000).
  7. T. Chiba. The constancy of the constants of Nature: Updates. Prog. Theor. Phys. 126, 993 (2011); ArXiv: 1111.0092.
  8. T. Chiba and M. Yamaguchi, Runaway domain wall and space-time varying ?. JCAP 1103, 044 (2011); ArXiv: 1102.0105.
  9. K. A. Olive, M. Peloso, and J.-P. Uzan, The wall of fundamental constants. Phys. Rev. D 83, 043509 (2011); ArXiv: 1011.1504.
  10. K. A. Olive, M. Peloso, and A. J. Peterson, Where are the walls? ArXiv: 1204.4391.
  11. K. Bamba, S. Nojiri, S.D. Odintsov, ArXiv: 1107.2538.
  12. J. D. Barrow and S. Z.W. Lip, A generalized theory of varying alpha. ArXiv: 1110.3120.
  13. A. Mariano and L. Perivolaropoulos, Is there correlation between fine structure and dark energy cosmic dipoles? ArXiv: 1206.4055.
  14. A. Mariano and L. Perivolaropoulos, CMB maximum temperature asymmetry axis: alignment with other cosmic asymmetries. ArXiv: 1211.5915.
  15. K. A. Bronnikov, V. N. Melnikov, S. G. Rubin, and I. V. Svadkovsky, Nonlinear multidimensional gravity and the Australian dipole, ArXiv: 1301.3098.
  16. V. N. Melnikov, Multidimensional classical and quantum cosmology and gravitation. Exact solutions and variations of constants. In: Cosmology and Gravitation, ed. M. Novello (Editions Frontieres, Singapore, 1994), p. 147.
  17. V. N. Melnikov, Gravity and cosmology as key problems of the millennium. In: Albert Einstein Century Int. Conf., eds. J.-M. Alimi and A. Fuzfa, AIP Conf. Proc. 861, 109 (2006).
  18. K. A. Bronnikov and S. G. Rubin, Self-stabilization of extra dimensions Phys. Rev. D 73, 124019 (2006).
  19. J. Mueller and L. Biskupek, Variations of the gravitational constant from lunar laser ranging data Class. Quantum Grav. 24, 4533 (2007).
  20. K. A. Bronnikov and V. N. Melnikov, On observational predictions from multidimensional gravity Gen. Rel. Grav. 33, 1549 (2001).
  21. K. A. Bronnikov and V. N. Melnikov. Conformal frames and D-dimensional gravity, gr-qc/0310112; in: Proc. 18th Course of the School on Cosmology and Gravitation: The Gravitational Constant. Generalized Gravitational Theories and Experiments (30 April–10 May 2003, Erice), Ed. G.T. Gillies, V.N. Melnikov and V. de Sabbata (Kluwer, Dordrecht/Boston/London, 2004), p. 39–64.
  22. K. A. Bronnikov, S. G. Rubin, and I. V. Svadkovsky, Multidimensional world, inflation and modern acceleration Phys. Rev. D 81, 084010 (2010).
  23. S. V. Bolokhov, K. A. Bronnikov, and S. G. Rubin, Extra dimensions as a source of the electroweak model Phys. Rev. D 84, 044015 (2011).
  24. S. G. Rubin and A. S. Zinger, The Universe formation by a space reduction cascade with random initial parameters Gen. Rel. Grav. 44, 2283 (2012); ArXiv: 1101.1274.
  25. K. A. Bronnikov and S. G. Rubin, Black Holes, Cosmology and Extra Dimensions (World Scientific, Singapore, 2012).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page