Neutrino spin oscillations in gravitational fields

S.A. Alavi1, S.F. Hosseini2


We study neutrino spin oscillations in black hole backgrounds. In the case of a charged black hole, the maximum frequency of oscillations is a monotonically increasing function of the charge. For a rotating black hole, the maximum frequency decreases with increasing angular momentum. In both cases, the frequency of spin oscillations decreases as the distance from the black hole grows. As a phenomenological application of our results, we study a simple bipolar neutrino system which is an interesting example of collective neutrino oscillations. We show that the precession frequency of the flavor pendulum as a function of the neutrino number density will be higher for a charged non-rotating black hole as compared with a neutral rotating one.


  1. N. E. Mavromatos, Neutrinos and the Universe, CERN-PH-TH/2011-252, KCL-PH-TH/2011-34, LCTS/2011-17; arXiv: 1110.3729.
  2. J. Ren and C.-M. Zhang, Neutrino oscillations in the Kerr-Newman space time, Class. Quantum Grav. 27, 065011 (2010); arXiv: 1002.0648.
  3. M. Sprenger, P. Nicolini, and M. Bleicher, Quantum Gravity signals in neutrino oscillations, Int. J. Mod. Phys. E 20,supp 02, 1 (2011); arxiv: 1111.2341.
  4. G. Lambiase, G. Papini, R. Punzi, and G. Scarpetta, Neutrino optics and oscillations in gravitational fields, Phys. Rev. D 71, 073011 (2005); grqc/0503027.
  5. M. Dvornikov, Neutrino spin oscillations in gravitational fields, Int. J. Mod. Phys. D 15, 1017 (2006); hep-ph/0601095.
  6. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972), pp. 121124, see also p. 133.
  7. I. B. Khriplovich and A. A. Pomeransky, Equations of motion of spinning relativistic particles in external fields, JETP 86, 839 (1998); gr-qc/9710098.
  8. L. D. Landau and E. M. Lifschitz, The Classical Theory of Fields) (revised 4th English ed.), (Pergamon Press, N.Y.), p. 321.
  9. B. D. Nikolic and M. R. Pantic, A possible intuitive derivation of the Kerr metric in orthogonal form based on ellipsoidal metric ansatz, arxiv: 1210.5922.
  10. I. G. Dymnikova, Motion of particles and photons in the gravitational field of a rotating body, Sov. Phys. Usp. 29, 215 (1986).
  11. H. Duan, G. M. Fuller and Y. Z. Qian, Collective neutrino oscillations, Ann. Rev. Nucl. Part. Sci. 60, 569 (2010); arXiv: 1001.2799.
  12. H. Duan, G. M. Fuller, J. Carlson, and Y. Z. Qian, Analysis of collective neutrino flavor transformation in supernovae, Phys. Rev. D 75, 125005 (2007); astro-ph/0703776.
For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page