Separability and hidden symmetries of Kerr-Taub-NUT spacetime in Kaluza-Klein theory

Goksel Daylan Esmer1

Abstract

The Kerr-Taub-NUT spacetime in the Kaluza-Klein theory represents a localized stationary and axisymmetric object in four dimensions from the Kaluza-Klein viewpoint. That is, it harbors companion electromagnetic and dilaton fields, thereby showing up the signature of the extra fifth dimension. We explore the separability structure of this spacetime and show that the Hamilton-Jacobi equation for geodesics admits complete separation of variables only for massless geodesics. This implies the existence of hidden symmetries in the spacetime, which are generated by a conformal Killing tensor. Using a simple trick built up on a conformally related metric (an "effective" metric) with the Killing tensor, we construct an explicit expression for the conformal Killing tensor.

References

  1. M. DemiaA„ski and E. T. Newman, Bull. Acad. Polon. Sci., Ser. Sci., Math., Astron., Phys. 14, 653 (1966).
  2. E. T. Newman, L. Tamburino and T. Unti, J. Math. Phys. 4, 915 (1963).
  3. C. W. Misner, J. Math. Phys. 4, 924 (1963); C. W. Misner and A. H. Taub, Zh. Exper. Teor. Fiz. 55, 223 (1968); Sov. Phys. JETP 55, 122 (1969).
  4. W. B. Bonnor, Proc. Cambridge Phil. Soc. 66, 145 (1969).
  5. B. Carter, Commun. Math. Phys. 10, 280 (1968).
  6. D. Bini, C. Cherubini, R. T. Jantzen, and B. Mashhoon, Phys. Rev. D 67, 084013 (2003).
  7. D. Bini, C. Cherubini, R. T. Jantzen, and B. Mashhoon, Class. Quantum Grav. 20, 457 (2003).
  8. M. Walker and R. Penrose, Commun. Math. Phys. 18, 265 (1970).
  9. E. Radu, Phys. Rev. D 67, 084030 (2003).
  10. A. N. Aliev, Phys. Rev. D 77, 044038 (2008).
  11. C.V. Johnson and R. C. Myers, Phys. Rev. D 50, 6512 (1994).
  12. D. V. Galaˆ™tsov and O. V. Kechkin, Phys. Rev. D 50, 7394 (1994).
  13. N. Alonso-Alberca, P. Meessen, and T. Ortin, Class. Quantum Grav. 17, 2783 (2000).
  14. W. Chen, H. LA?, and C. N. Pope, Class. Quantum Grav. 23, 5323 (2006).
  15. D. KubizA?A k and V. P. Frolov, Class. Quantum Grav. 24, F1 (2007).
  16. V. P. Frolov and D. KubizA?A k, Class. Quantum Grav. 25, 154005 (2008).
  17. A. N. Aliev, H. Cebeci, and T. Dereli, Phys. Rev. D 77, 124022 (2008).
  18. G.W. Gibbons and D. L. Wiltshire, Ann. Phys. (N.Y.) 167, 201 (1986); Erratum: ibid. 176, 393 (1987).
  19. V. P. Frolov, A. Zelnikov, and U. Bleyer, Ann. Phys. (Leipzig) 44, 371 (1987).
  20. A. N. Aliev and G. Daylan Esmer, Phys. Rev. D 87, 08402 (2013).
  21. Z-W. Chong, G. W. Gibbons, H. LA?, and C. N. Pope, Phys. Lett. B 609, 124 (2005).
  22. Z-W. Chong, M. CvetiA?, H. LA?, and C. N. Pope, Nucl. Phys. B 717, 246 (2005).
  23. Z-W. Chong, M. CvetiA?, H. LA?, and C. N. Pope, Phys. Lett. B 644, 192 (2007).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page