A study of plane torsion waves in the Poincare gauge theory of gravity

O.V. Babourova, B.N. Frolov, V.N. Scherban'1

Abstract

The variational equations of the gravitational field in Riemann-Cartan space are derived in the external forms formalism using the method of Lagrange indefinite multipliers for the Poincare gauge theory of gravity with quadratic Lagrangians in the general form. The structure of the irreducible parts of torsion propagating in the form of plane waves in Riemann-Cartan spacetime is investigated.

References

  1. W. Adamovich, Gen. Rel. Grav. 12, 677 (1980).
  2. R. Sipper and H. Goenner, Gen. Rel. Grav. 18, 1229 (1986).
  3. S. Jogia and J. B. Griffiths, Gen. Rel. Grav. 12, 597 (1980).
  4. V. V. Zhytnikov, J. Math. Phys. 35, 6001 (1994).
  5. O. V. Babourova, B. N. Frolov, and E. A. Klimova, Class. Quantum Grav. 16, 1149 (1999); gr-qc/9805005.
  6. A. Garcia, A. Macias, D. Puetzfeld, and J. Socorro, Phys. Rev. D. 62, 044021 (2000).
  7. A. D. King and D. Vassiliev, Class. Quantum Grav. 18, 2317 (2001).
  8. A. J. Keane and B. O. J. Tupper, Class. Quantum Grav. 21, 2037 (2004).
  9. O. V. Babourova, B. N. Frolov, and V. N. Shcherbanaˆ™, Izv. Vuzov, Fizika, 55(6), 114 (2012) [Russ. Phys. J. 55 (6), 726 (2012)].
  10. B. N. Frolov, Vestn. Mosk. Univ., Fiz., Astron., No. 6, 48 (1963).
  11. K. Hayashi, Prog. Theor. Phys. 39, 494 (1968).
  12. B. N. Frolov, Acta Phys. Polon. B 9, 823 (1978).
  13. F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Neeman, Phys. Rep. 258, 1 (1995); gr-qc/9402012.
  14. B. N. Frolov, The PoincarA© Gauge Theory of Gravity (MPGU, Prometei, Moscow, 2003).
  15. B. N. Frolov, Grav. Cosmol. 6, 116 (2004); gr-qc/0507103.
  16. Yu. N. Obukhov, Int. J. Geom. Math. Mod. Phys. 3, 95 (2006); gr-qc/0601090.
  17. O. V. Babourova, B. N. Frolov, and R. S. Kostkin, Diracaˆ™s scalar field as dark energy with the frameworks of conformal theory of gravitation in Weyl-Cartan space, Arxiv: 1006.4761.
  18. O. V. Babourova and B. N. Frolov, Dark energy, Diracaˆ™s scalar field and the cosmological constant problem, Arxiv: 1112.4449.
  19. O. V. Baburova, R. S. Kostkin, and B. N. Frolov, Izv. Vuzov, Fizika, 54(1), 111 (2011) [Russ. Phys. J. 54 (1), 121 (2011)]; Arxiv: 1102.2901.
  20. O. V. Babourova, K. N. Lipkin, and B. N. Frolov, Izv. Vuzov, Fizika, 55(7), 113 (2012) [Russ. Phys. J. 55 (7), 225 (2012)].
  21. O. V. Babourova, B. N. Frolov, and K. N. Lipkin, Grav. Cosmol. 18(4), 225 (2012).
  22. A. Trautman, in Recent Development in General Relativity (Pergamon Press, Oxford, PNN-Polish Scientific Publishers, Warszawa, 1962), pp. 459aˆ“464.
  23. Y. Z. Zhang, Phys. Rev. D 28, 1866 (1983).
  24. V. V. Zhytnikov, GRG. Computer algebra system for differential geometry, gravity and field theory. Ver. 3.2 (Moscow, 1997).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page