Bouncing solutions in Rastall's theory with a barotropic fluid

G.F. Silva, O.F. Piattella, J.C. Fabris, L. Casarini, T.O. Barbosa1

Abstract

Rastall's theory is a modification of Einstein's theory of gravity where the covariant divergence of the stress-energy tensor is no more vanishing, but is proportional to the gradient of the Ricci scalar. The motivation of this theory is to investigate a possible non-minimal coupling of matter fields to geometry which, being proportional to the curvature scalar, may represent an effective description of quantum gravity effects. Non-conservation of the stress-energy tensor, via Bianchi identities, implies new field equations which have been recently used in a cosmological context, leading to some results of interest. In this paper we adopt Rastall's theory to reproduce some features of the effective Friedmann equation emerging from loop quantum cosmology. We determine a class of bouncing cosmological solutions and comment about the possibility of employing these models as effective descriptions of a full quantum theory.

References

  1. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973).
  2. G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Rev. Mod. Phys. 81, 1827 (2009).
  3. P. Rastall, Phys. Rev. D 6, 3357 (1972).
  4. P. Rastall, Can. J. Phys. 54, 66 (1976).
  5. N.D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).
  6. J. C. Fabris, T. C. C. Guio, M. Hamani Daouda, and O. F. Piattella, Grav. Cosmol. 17, 259 (2011).
  7. J. C. Fabris, M. H. Daouda, and O. F. Piattella, Phys. Lett. B 711, 232 (2012).
  8. C. E. M. Batista, M. H. Daouda, J. C. Fabris, O. F. Piattella, and D. C. Rodrigues, Phys. Rev. D 85, 084008 (2012).
  9. M. H. Daouda, J. C. Fabris, and O. F. Piattella, AIP Conf. Proc. 1471, 57 (2012).
  10. J. C. Fabris, O. F. Piattella, D. C. Rodrigues, C. E. M. Batista, and M. H. Daouda, Int. J. Mod. Phys. Conf. Ser. 18, 67 (2012).
  11. James E. Lidsey, David Wands, and E. J. Copeland, Phys. Rep. 337, 343 (2000).
  12. C. P. Constantinidis, J. C. Fabris, R. G. Furtado, N. Pinto-Neto, and D. Gonzalez, Phys. Rev. D 73, 123513 (2006).
  13. K. A. Bronnikov and J. C. Fabris, JHEP 0209, 062 (2002).
  14. N. Pinto-Neto, Quantum cosmology, in: Cosmology and Gravitation II, ed. by Mario Novello (Editions FrontiA?res, Gif-sur-Yvette, 1996).
  15. J. C. Fabris, F. T. Falciano, P. Vargas Moniz, J. Marto, and N. Pinto-Neto, Dilaton quantum cosmology with a Schrodinger-like equation, arXiv: 1208.3509 (to appear in Brazil. J. Phys.).
  16. C. Rovelli, Quantum Gravity (Cambridge Univeresity Press, Cambridge, 2004).
  17. A. Ashtekar and P. Singh, Class. Quantum Grav. 28, 213001 (2011).
  18. K. Banerjee, G. Calcagni, and M. Martin-Benito, SIGMA 8, 016 (2012).
  19. M. Bojowald, Class. Quantum Grav. 29, 213001 (2012).
  20. Gh. Date, Lectures on LQG/LQC, arXiv: 1004.2952.
  21. Hua-H. Xiong, T. Qiu, Yi-F. Cai, and X. Zhang, Mod. Phys. Lett. A 24, 1237 (2009).
  22. E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
  23. G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R. Nolta, M. Halpern, et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, arXiv: 1212.5226.
  24. Y. Wu, S. Li, J. Lu, and X. Yang, Mod. Phys. Lett. A 22, 783 (2007).
  25. J. He, Y.-B. Wu, and F.-H. Fu, Chin. Phys. Lett. 25, 347 (1978).
  26. M. L. Bedran, V. Soares, and M. E. Araujo, Phys. Lett. B 659, 462 (2008).
  27. J. C. Fabris, C. Ogouyandjou, J. Tossa, and H. E. S. Velten, Phys. Lett. B 694, 289 (2011).
  28. S. D. P. Vitenti, F. T. Falciano, and N. Pinto-Neto, Quantum cosmological perturbations of generic fluids in quantum universes, arXiv: 1206.4374.
  29. M. Novello and S. E. P. Bergliaffa, Phys. Rep. 463, 127 (2008).
  30. P. Peter, E. J. C. Pinho, and N. Pinto-Neto, Phys. Rev. D 75, 023516 (2007).
  31. D. J. Mulryne and N. J. Nunes, Phys. Rev. D 74, 083507 (2006).
  32. J. Mielczarek, Phys. Rev. D 79, 123520 (2009).
  33. J. Grain, A. Barrau, T. Cailleteau, and J. Mielczarek, Phys. Rev. D 82, 123520 (2010).
  34. M. Bojowald, G. Calcagni, and Sh. Tsujikawa, Phys. Rev. Lett. 107, 211302 (2011).
  35. M. Bojowald, G. Calcagni and Sh. Tsujikawa, JCAP 11, 046 (2011).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page