Quantum billiards in multidimensional models with fields of forms

V.D. Ivashchuk, V.N. Melnikov1, V.D. Ivashchuk, V.N. Melnikov2

Abstract

A Bianchi type I cosmological model in (n + 1)-dimensional gravity with several forms is considered. When the electric non-composite brane ansatz is adopted, the Wheeler-DeWitt (WDW) equation for the model, written in a conformally covariant form, is analyzed. Under certain restrictions, asymptotic solutions to the WDW equation near the singularity are found, which reduce the problem to the so-called quantum billiard on the (n - 1)-dimensional Lobachevsky space Hn - 1. Two examples of quantum billiards are considered: a 2-dimensional quantum billiard for a 4D model with three 2-forms and a 9D quantum billiard for an 11D model with 120 4-forms, whichmimics the SM2-brane sector of D = 11 supergravity. For certain solutions, vanishing of the wave function at the singularity is proved.

References

  1. D. M. Chitre, PhD. thesis (University of Maryland, 1972).
  2. V. A. Belinskii, E. M. Lifshitz, and I. M. Khalatnikov, Usp. Fiz. Nauk 102, 463 (1970) [in Russian]; Adv. Phys. 31, 639 (1982).
  3. C.W. Misner, Quantum cosmology, Phys. Rev. 186, 1319 (1969).
  4. C. W. Misner, The Mixmaster cosmological metrics, preprint UMCP PP94-162; gr-qc/9405068.
  5. A. A. Kirillov, Sov. Phys. JETP 76, 355 (1993) [Zh. Eksp. Teor. Fiz. 76, 705 (1993), in Russian]; Int. J. Mod. Phys. D 3, 431 (1994).
  6. V. D. Ivashchuk, A. A. Kirillov, and V. N. Melnikov, On stochastic properties ofmultidimensional cosmological models near the singular point, Izv.Vuzov (Fizika) 11, 107 (1994) (in Russian) [Russ. Phys. J. 37, 1102 (1994)].
  7. V. D. Ivashchuk, A. A. Kirillov, and V. N. Melnikov, On stochastic behavior of multidimensional cosmological models near the singularity, Pisaˆ™ma ZhETF 60(4), 225 (1994) (in Russian) [JETP Lett. 60, 235 (1994)].
  8. V. D. Ivashchuk and V. N. Melnikov, Billiard representation for multidimensional cosmology with multicomponent perfect fluid near the singularity, Class. Quantum Grav. 12, 809 (1995); grqc/9407028.
  9. V. D. Ivashchuk and V. N. Melnikov, Billiard representation for multidimensional cosmology with intersecting p-branes near the singularity, J. Math. Phys. 41, 6341 (2000); hep-th/9904077.
  10. T. Damour and M. Henneaux, Chaos in superstring cosmology, Phys. Rev. Lett. 85, 920 (2000); hepth/0003139.
  11. T. Damour, M. Henneaux, and H. Nicolai, Cosmological billiards, topical review. Class. Quantum Grav. 20, R145 (2003); hep-th/0212256.
  12. A. Kleinschmidt, M. Koehn, and H. Nicolai, Supersymmetric quantum cosmological billiards, Phys. Rev. D 80, 061701 (2009); Arxiv: 0907.3048.
  13. A. Kleinschmidt and H. Nicolai, Cosmological quantum billiards, Arxiv: 0912.0854.
  14. H. LA?, J. Maharana, S. Mukherji and C. N. Pope, Cosmological solutions, p-branes and the Wheeler-DeWitt equation, Phys. Rev. D 57, 2219 (1997); hep-th/9707182.
  15. V. D. Ivashchuk and V. N. Melnikov, Multidimensional classical and quantum cosmology with intersecting p-branes, J. Math. Phys. 39, 2866 (1998); hep-th/9708157.
  16. J.W. York, Role of conformal three-geometry in the dynamics of gravitation, Phys. Rev. Lett. 28(16), 1082 (1972).
  17. G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15, 2752 (1977).
  18. V. D. Ivashchuk and V. N. Melnikov, Sigma-model for the generalized composite p-branes, Class. Quantum Grav. 14, 3001 (1997); Corrigendum ibid. 15, 3941 (1998); hep-th/9705036.
  19. C. W. Misner, In: Magic without magic: John Archibald Wheeler, ed. J. R. Klauder (Freeman, San Francisko, 1972).
  20. J. J. Halliwell, Derivation of the Wheeler-DeWitt equation from a path integral for minisuperspace models, Phys. Rev. D 38, 2468 (1988).
  21. V. D. Ivashchuk, V. N. Melnikov, and A. I. Zhuk, On Wheeler-DeWitt equation inmultidimensional cosmology, Nuovo Cim.B 104(5), 575 (1989).
  22. V. D. Ivashchuk and V. N. Melnikov, On billiard approach in multidimensional cosmological models, Grav. Cosmol. 15(1), 49 (2009); ArXiv: 0811.2786.
  23. E. Cremmer, B. Julia, and J. Scherk, Supergravity theory in eleven dimensions, Phys. Lett. B 76, 409 (1978).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page