Dark energy from instantons

Leonid Marochnik1

Abstract

We show that in imaginary time quantum metric fluctuations of empty space form a self-consistent de Sitter gravitational instanton that can be thought of as describing tunneling from "nothing" into de Sitter space of real time (no cosmological constant or scalar fields are needed). For the first time, this mechanism is activated to give birth to a flat inflationary Universe. For the second time, it is turned on to complete the cosmological evolution after the energy density of matter drops below the threshold (the energy density of instantons). A cosmological expansion with dark energy takes over after the scale factor exceeds this threshold, which marks the birth of dark energy at a redshift 1 + z ≈ 1.3 and provides a possible solution to the "coincidence problem". The number of gravitons which tunneled into the Universe must be of the order of 10122 to create the observed value of the Hubble constant. This number has nothing to do with vacuum energy, which is a possible solution to the "old cosmological constant problem". The emptying Universe should possibly complete its evolution by tunneling back to "nothing". After that, the entire scenario is repeated, and it can happen endlessly.

References

  1. A. G. Riess et al, AJ 116, 1009 (1998).
  2. S. Perlmutter et al., ApJ 517, 565 (1999).
  3. V. Sahni and A. Starobinsky, IJMPD 9, 373 (2000).
  4. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).
  5. E. J. Copeland, M. Sami, and S. Tsujikawa, 006, Int. J.Mod. Phys. D 15, 1753 (2006).
  6. A. Chernin, Sov. Phys. Uspekhi. 51, 253 (2008).
  7. J. A. Frieman, M. S. Turner, and D. Huterer, ARA and A, 46, 385 (2008).
  8. D. A. Easson, P. H. Frampton, and G. F. Smoot, Phys. Lett. B 696, 273 (2011)
  9. A. G. Riess et al., Ap. J. 730, 119 (2011).
  10. A. Brown and A. Dahlen, arXiv: 1106.0527.
  11. G. W. Gibbons and S. W. Hawking, Eds., Euclidean Quantum Gravity (World Scientific, Singapore, 1993).
  12. E. Tryon, Nature 246, 396 (1973).
  13. Ya. B. Zeldovich, Sov.Astron. Lett. 7(5), 322 (1981).
  14. D. Atkatz and H. Pagels, 1982, Phys. Rev. D 25, 2065 (1982).
  15. J. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).
  16. A. Vilenkin, 1982, Phys. Lett. B 117, 25 (1982); Phys. Rev. D 27, 2848 (1983).
  17. L. P. Grishchuk and Ya. B. Zeldovich, in: Quantum Structure of Space and Time, ed. M. Duff and C. Isham, (Cambridge University Press, Cambridge, 1982), p. 409; see also Preprint IKI (Space Research Institute, USSR Academy of Sci.) # 726, 1982.
  18. G.W. Gibbons and J.B. Hartle, Phys.Rev.D 42, 2458 (1990).
  19. S.W. Hawking and I.G. Moss, Phys. Lett. B 110, 35 (1982).
  20. V. Sahni and A. Starobinsky, IJMPD 15, 2105 (2006).
  21. G. Ellis, A. Sumeruk, D. Coule, and ?. Hellaby, Class. Quantum Gravity 9, 1535 (1992).
  22. S. A. Hayward, gr-qc/9303034.
  23. J. Martin, Phys. Rev. D 52, 6708 (1995).
  24. A. White, S. Weinfurtner, and M. Visser, Class. Quantum Grav. 27, 045007 (2010).
  25. S. A. Hayward, gr-qc/9509052.
  26. S. W. Hawking and N. Turok, Phys. Lett. B 425, 25 (1998).
  27. A. Vilenkin, gr-qc/9812027.
  28. A. Linde, 1998, Phys. Rev. D 58, 083514 (1998).
  29. Ya. B. Zeldovich and A. Starobinsky, Sov. Astron. Lett. 10, 135 (1984).
  30. A. Linde, JCAP 0410, 004 (2004).
  31. L. Marochnik, D. Usikov, and G. Vereshkov, Found. Phys. 38, 546 (2008).
  32. L. Marochnik, D. Usikov, and G. Vereshkov, arXiv: 0811.4484.
  33. G. Vereshkov and L. Marochnik, J. Mod. Phys. 4, 285 (2013); arXiv: 1108.4256.
  34. R. P. Feynman, Acta Phys. Polon. 24, 697 (1963).
  35. L. D. Faddeev and V. N. Popov, Phys. Lett. B 25, 30 (1967).
  36. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
  37. Ya. B. Zeldovich and A. Starobinsky, JETP 34, 1159 (1972).
  38. Ya. B. Zeldovich, Sov. Phys. Uspekhi 24, 216 (1981).
  39. V. Mukhanov and S. Winitzki, Introduction to Quantum Effects in Gravity (Cambridge Univ. Press, 2007).
  40. A. Linde, New Astronomy Reviews 49, 35 (2005).
  41. S. Weinberg, Cosmology (Oxford Univ. Press, 2008)
  42. S. Weinberg, Phys. Rev. Lett. 59, 2607 (1987).
  43. P. A. R. Ade et al., arXiv: 1303.5090.
  44. R. A. Daly and S. G. Djorgovski, Ap. J. 612, 652 (2004).
  45. F. Y. Wang and Z.G. Wang, Chin. J. Astron. Astrophys. 6, 561 (2006).
  46. S. Shapiro and M. Turner, Ap. J. 649, 563 (2006).
  47. A. G. Riess et al., Ap. J. 659, 98, (2007).
  48. R. A. Daly et al., Ap. J. 677, 1, (2008).
  49. C. Blake et al., arXiv: 1204.3674.
  50. N. G. Busca et al, arXiv: 1211.2616.
  51. L. P. Grishchuk, JETP 40, 409 (1975).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page