Tera-leptons' shadows over Sinister Universe

D. Fargion1, D. Fargion2, M.Yu. Khlopov3, M.Yu. Khlopov4

Abstract

The role of Sinister Heavy Fermions in Glashow's SU(3) × SU(2) × SU(2)' × U(1) model is to offer in a unique frame relic helium-like products (an ingenious candidate to the dark matter puzzle), a solution to the See-Saw mechanism for light neutrino masses as well as to the strong CP violation problem in QCD. The Sinister model requires three additional families of leptons and quarks, but only the lightest of them, the heavy U-quark and E-electron, are stable. Apparently the final neutral heliumlike (UUUEE) state is an ideal evanescent dark-matter candidate. However, it is reached by multi-body interactions in the early Universe along a tail of more manifest secondary frozen blocks. They should be now here polluting the surrounding matter. Moreover, in opposition to effective UU pair annihilation, there is no such an early or late tera-lepton pairs suppression because: (a) electromagnetic interactions are weaker than nuclear ones and (b) the primordial helium nucleus (4He)++ is able to attract and capture (in the first three minutes) E- fixing it into a hybrid tera-helium ion trap. This leads to a pile up of (4HeE-)+ traces, a lethal compound for any Sinister Universe. This capture leaves no tera-lepton frozen in (Ep) relic, otherwise an ideal catalyzer to achieve effective late E+E- annihilations, possibly saving the model. The (4HeE-)+ Coulomb screening is also avoiding the synthesis of the desired (UUUEE) hidden dark matter gas. The (4HeE-)+E- behave chemically like an anomalous hydrogen isotope. Also terapositronium relics (e-E+) are over-abundant, and they behave like an anomalous hydrogen atom: these gases do not fit by many orders of magnitude the known severe bounds on hydrogen anomalous isotope, making shadows hanging over a Sinister Universe. However a surprising and resolver role for Tera-Pions in UHECR astrophysics has been revealed.

References

  1. S. L. Glashow, A sinister extension of the standard model to SU(3) x SU(2) x SU(2) x U(1), hepph/0504287.
  2. K.M. Belotsky et al., May Heavy hadrons of the 4th generation be hidden in our Universe while close to detection?, hep-ph/0411271.
  3. D. Fargion and M. Khlopov, Tera-Leptons Shadows over Sinister Universe, hep-ph/0507087.
  4. M. Yu. Khlopov and K. I. Shibaev, Grav. Cosmol. 8 Suppl., 45 (2002).
  5. K. M. Belotsky, M. Yu. Khlopov, and K. I. Shibaev, Grav. Cosmol. 6 Suppl., 140 (2000).
  6. D. Fargion et al., JETP Letters 69, 434 (1999); astro/ph-9903086.
  7. D. Fargion et al, Astropart. Phys. 12, 307 (2000); astro-ph/9902327.
  8. K. M. Belotsky and M. Yu. Khlopov, Grav. Cosmol. 8 Suppl., 112 (2002).
  9. K. M. Belotsky and M. Yu. Khlopov, Grav. Cosmol. 7 189 (2001).
  10. M. Yu. Khlopov, JETP Letters 83, 1 (2006); astroph/0511796.
  11. K. M. Belotsky, M. Yu. Khlopov, and K. I. Shibaev, Grav. Cosmol. 12 Suppl., 1 (2006); astroph/0604518.
  12. K. M. Belotsky, M. Yu. Khlopov, and K. I. Shibaev, in The Physics of Quarks: New Research (Horizons in World Physics, V. 265, Eds. N. L. Watson and T. M. Grant, NOVA Publishers, Hauppauge NY, 2009), p. 19; arXiv: 0806.1067.
  13. A. Connes, Noncommutative Geometry (Academic Press, London and San Diego, 1994).
  14. C. A. Stephan, Almost-commutative geometries beyond the standard model, hep-th/0509213.
  15. D. Fargion, M. Khlopov, and C. Stephan, Class. Quantum Grav. 23, 7305 (2006); astro-ph/0511789.
  16. F. Sannino and K. Tuominen, Phys. Rev. D 71, 051901 (2005); hep-ph/0405209.
  17. S. B. Gudnason et al., Phys. Rev. D 73, 115003 (2006).
  18. M. Yu. Khlopov and C. Kouvaris, Phys. Rev. D 77, 065002 (2008); arXiv: 0710.2189.
  19. M. Yu. Khlopov and C. Kouvaris, Phys. Rev. D 78, 065040 (2008); arXiv: 0806.1191.
  20. N. S. Mankoc( Bors(tink, Bled Workshops in Physics 11, 105 (2010).
  21. M. Yu. Khlopov and N. S. Mankoc( Bors(tink, Bled Workshops in Physics 11, 178 (2010).
  22. M. Yu. Khlopov, Composite dark matter from stable charged constituents, arXiv: 0806.3581.
  23. M. Yu. Khlopov, A. G. Mayorov, and E. Yu. Soldatov, Prespacetime Journal 1, 1403 (2010); arXiv: 1012.0934.
  24. M. Yu. Khlopov, Mod. Phys. Lett. A 26, 2823 (2011); arXiv: 1111.2838
  25. J.-R. Cudell, M. Yu. Khlopov, Qand. Wallemacq, Bled Workshops in Physics 13, 10 (2012); arXiv: 1211.5684.
  26. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 1 (2012).
  27. M. Yu. Khlopov and A. D. Linde, Phys. Lett. B 138, 265 (1984); F. Balestra et al., Sov. J. Nucl. Phys. 39, 646 (1984); Nuovo Cim. A 79, 193 (1984); M. Yu. Khlopov et al., Phys. Atom. Nucl. 57, 1393 (1994).
  28. M. Yu. Khlopov, Cosmoparticle Physics (World Scientific, 1999).
  29. M. Khlopov, Fundamentals of Cosmic Particle Physics (CISP-Springer, Cambridge, 2012).
  30. M. L. Burns and R. V. E. Lovelace, Astrophys. J. 202, 87 (1982).
  31. F. A. Aharonian and V. V. Vardanian, Preprint EFI-827-54-85-YEREVAN (1985).
  32. J. Klein et al., in Proceedings of the Symposium on Accelerator Mass Spectrometry (Argonne National Laboratory, Argonne, IL, 1981).
  33. J. Vandegriff et al., Phys. Lett. B 365, 418 (1996).
  34. P. Mueller et al., Phys. Rev. Lett. 92, 022501 (2004).
  35. R. Middleton et al., Phys. Rev. Lett. 43, 429 (1979).
  36. T. K. Hemmick et al., Phys. Rev. D 41, 2074 (1990).
  37. P. F. Smith et al., Nucl. Phys. B 206, 333 (1982).
  38. M. Yu. Khlopov, JETP Lett. 33, 162 (1981).
  39. K. Greisen, Phys. Rev. Lett. 16, 748 (1966).
  40. G. T. Zatsepin and V. A. Kuz'min, JETP Lett. 4, 78 (1966).
  41. V. K. Dubrovich, D. Fargion, and M. Yu. Khlopov, Astropart. Phys. 22, 183 (2004); hep-ph/0312105.
  42. D. Fargion, Astrophys. J. 570, 909 (2002); astroph/ 0002453.
  43. D. Fargion et al., Astrophys. J. 613, 1285 (2004).
  44. K. M. Belotsky, M. Yu. Khlopov, and K. I. Shibaev, Grav. Cosmol. 18, 127 (2012).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page