Self-similar scalar cosmologies

J.A. Belinchon1

Abstract

We study several scalar cosmological models under the self-similar approach. We deduce, by stating and proving general theorems, which is the exact form that must follow the scalar field and the potential in the frameworks of a single scalar field and non-interacting (with a perfect fluid) models. The proofs are carried out by two methods: the matter collineation approach and the Lie group method. The results obtained are absolutely general and valid for all Bianchi models and the flat FRW one. In order to study how the "constant" G may vary we propose, in a phenomenological way, how to incorporate a variable G in the framework of scalar models by modifying the Klein-Gordon equation. This approach is more general than the usual one in the context of the FRW symmetries. We deduce the exact form to be followed by each quantity in these new models. Therefore, to study how the "constants" G and Λ may vary, we propose three scenarios where such constants are considered as time functions: modified general relativity with a perfect fluid, the scalar cosmological models ("quintessence") in the non-interacting case and a scalar-tensor model with a dynamical Λ. As an example, we study the case of Bianchi VI0 geometry.

References

  1. P. Bernadis et al., Nature 404, 955 (2000); S. Hanany et al., Astrophys. J. Lett. 545, L5 (2000); A. Balbi et al., Astrophys. J. Lett. 545, L1 (2000).
  2. S. Perlmutter et al., Nature 391, 51 (1998); Astrophys. J. 517, 565 (1999); A. Riess et al., Astron. J. 116, 1009 (1998); P. M. Garnavich et al., Astrophys. J. Lett. 493, L53 (1998).
  3. V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000).
  4. P. J. E. Peebles, Rev. Mod. Phys. 75, 559 (2003).
  5. T. Padmanabhan, Phys. Rep. 380, 235 (2003).
  6. T. Padmanabhan, Gen. Rel. Grav. 40, 529 (2008).
  7. J. M. F. Maia and J. A. S. Lima, Phys. Rev. D 65, 083513 (2002).
  8. W. Chen and Y.-S. Wu, Phys. Rev. D 41, 695 (1990).
  9. P. J. Peebles and B. Ratra, Astrophys. J. 325, L17 (1988); B. Ratra and P. J. Peebles, Phys. Rev. D 37, 3406 (1988); R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).
  10. C. Wetterich, Nucl. Phys. B 302, 668 (1988); P. J. Steinhardt, L. Wang, and I. Zlatev, Phys. Rev. D 59, 123504 (1999).
  11. L. M. Diaz-Rivera and L. O. Pimentel, Int. J. Mod. Phys. A 18, 651 (2003).
  12. C. Brans and R. H. Dicke, Phys.Rev. 124, 925 (1961).
  13. P. G. Bergmann, Int. J. Theor. Phys. 1, 25 (1968); K. Nordtvedt, Astrophys. J. 161, 1059 (1970); Y. Fujii and K. Maeda, The scalar-Tensor Theory of Gravitation (CUP, 2003); V. Faraoni, Cosmology in Scalar-Tensor Gravity' (Kluwer Academic Publishers, 2004).
  14. O. Bertolami and P. J. Martins, Phys. Rev. D 61, 064007 (2000).
  15. S. Sen and A. A. Sen, Phys. Rev. D 63, 124006 (2001); A. A. Sen and S. Sen, Mod. Phys. Lett A 16, 1303 (2001); A. A. Sen, S. Sen, and S. Sethi, Phys. Rev. D 63, 107501 (2001).
  16. S. Sen and T. Seshadri, Int. J. Mod. Phys. D 12, 445 (2003).
  17. N. Banerjee and D. Pavon, Phys. Rev. D 63, 043504 (2001).
  18. N. Bartolo and M. Pietroni, Phys. Rev. D 61, 023518 (2000).
  19. A. A. Coley, Dynamical Systems and Cosmology (Kluwer Academic Publishers, 2003).
  20. J. A. Belincho'n, Gravitation Cosmol. 15, 306 (2009).
  21. B. J. Carr and A. A. Coley, Class. Quantum Grav. 16, R31 (1999).
  22. N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations (JohnWiley & Sons, 1999).
  23. M. B. Green et al., Superstring Theory (CUP, 1988).
  24. F. S. Guzman et al., Rev. Mex. Astron. Astrofis. 37, 63 (2001).
  25. D. Huterer and M. S. Turner, Phys. Rev.D 60, 081301 (1999).
  26. J. A. Belincho'n, Int. J. Moder. Phys A 23, 5021 (2008).
  27. H. Stephani et al., Exact Solutions of Einstein's Field Equations (2nd ed., Cambridge University Press, 2003).
  28. K. A. Bronnikov et al., Class. Quantum Grav. 21, 3389 (2004).
  29. T. Harko and M. K. Mak, Int. J. Mod. Phys. D 11, 1171 (2002).
  30. W. C. Lim, A. A. Coley, and S. Hervik, Class. Quantum Grav. 24, 595 (2006).
  31. J. Wainwright, M. J. Hancock, and C. Uggla, Class. Quantum Grav. 16, 2577 (1999).
  32. J. A. Belincho'n, Class. Quantum Grav. 26, 175003 (2009).
  33. C. M. Will, Theory and Experiments in Gravitational Physics (CUP, 1993)
  34. J. A. Belincho'n, Eur. Phys. J. C 72, 1866 (2012).
  35. B. Bertotti, L. Iess, and P. Tortora, Nature (London) 425, 374 (2003).
  36. J. A. Belincho'n, J. Gravity. Article ID 491905 (2013).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page