On the stability of power-law solutions in multidimensional Gauss-Bonnet cosmology

D.M. Chirkov, A.V. Toporensky1, D.M. Chirkov2

Abstract

We consider the dynamics of a flat anisotropic multidimensional cosmological model in Gauss-Bonnet gravity in the presence of a homogeneous magnetic field. In particular, we find conditions under which the known power-law vacuum solution can be an attractor in the presence of a nonzero magnetic field. We also describe a particular class of numerical solutions in (5 + 1) dimensions, which does not approach a power-law regime.

References

  1. V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz, Adv. Phys. 19, 525 (1970).
  2. Victor G. LeBlanc, Class. Quantum Grav. 14, 2281 (1997).
  3. R. Benini, A. A. Kirillov, and G. Montani, Class. Quantum Grav. 22, 1483 (2005).
  4. G. Rosen, J. Math. Phys. 3, 313 (1962).
  5. N. V. Mitskievich, Rev. Mex. Fis. 49S2, 39 (2003); gr-qc/0202032.
  6. N. V. Mitskievich, Relativistic Physics in Arbitrary Reference Frames (Nova Science Publishers, 2006); gr-qc/9606051.
  7. N. V. Mitskievich, Electromagnetism and perfect fluids interplay in multidimensional spacetimes, in: Proc. MG11 (2006); arXiv: 0707.3190.
  8. N. Deruelle, Nucl. Phys. B 327, 253 (1989).
  9. N. Deruelle and L. Farina Busto, Phys. Rev. D 41, 3696 (1990).
  10. A. Toporensky and P. Tretyakov, Grav. Cosmol. 13, 207 (2007); arXiv: 0705.1346.
  11. S. A. Pavluchenko, Phys. Rev. D 80, 107501 (2009); arXiv: 0906.0141.
  12. I. Kirnos, A. Makarenko, S. Pavluchenko, and A. Toporensky, Gen. Rel. Grav. 42, 2633 (2010); arXiv: 0906.0140.
  13. I. Kirnos, S. Pavluchenko, and A. Toporensky, Grav. Cosmol. 16, 274 (2010); arXiv: 1002.4488.
  14. V. Ivashchuk, Grav. Cosmol. 16, 118 (2010); arXiv: 0910.3426.
  15. V. Ivashchuk, Int. J. Geom. Meth. Mod. Phys. 7, 797 (2010); arXiv: 0910.3426.
  16. E. Kasner, American Journal of Math. 43, 217 (1921).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page