A new type of second-order cosmological Lagrangians

P. Tretyakov1


We study a possible connection between two second-order theories of gravity, Galileon gravity and teleparallel gravity. By using the conformal transformation method, we construct from the third-order Galileon action some auxiliary action, which can be covariantly generalized only in theories with torsion. On this way we also obtain a new second-order phenomenological Lagrangian, which may be useful for cosmological applications and for construction of a new second-order theory of gravity.


  1. S. Nojiri and S. D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007); hep-th/0601213.
  2. S. Tsujikawa, Modified gravity models of dark energy, Lect. Notes Phys. 800, 99 (2010); Arxiv: 1101.0191.
  3. S. Nojiri and S. D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rep. 505, 59 (2011); Arxiv: 1011.0544.
  4. T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Modified gravity and cosmology, Phys. Rep. 513, 1 (2012); Arxiv: 1106.2476.
  5. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12, 498 (1971)
  6. A. Palatini, Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rend. Circ. Mat. Palermo 43, 203 (1919).
  7. C. Gao, Generalized modified gravity with the second-order acceleration equation, Phys. Rev. D 86, 103512 (2012); Arxiv: 1208.2790.
  8. A. Nicolis, R. Rattazzi, and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79, 064036 (2009); Arxiv: 0811.2197.
  9. C. Deffayet,G. Esposito-Farese, and A. Vikman, Covariant Galileon, Phys. Rev. D 79, 084003 (2009).
  10. C. Deffayet, S. Deser, and G. Esposito-Farese, Generalized Galileons: All scalar models whose curved background extensions maintain secondorder field equations and stress tensors, Phys. Rev. D 80, 064015 (2009); Arxiv: 0906.1967.
  11. C. de Rham, Galileons in the sky, ArXiv: 1204.5492; to appear in a special volume of the "Comptes Rendus de l'Academie des Sciences".
  12. A. I. Vainshtein, On the problem of nonvanishing gravitational mass, Phys. Lett. B 39, 393 (1972).
  13. K. Van Acoleyen and J. Van Doorsselaere, Galileons from Lovelock actions, Phys. Rev. D 83, 084025 (2011); Arxiv: 1102.0487.
  14. E. Schro"dinger, Space-Time Structure (Cambridge University Press, 1950).
  15. E. V. Linder, Einstein's other gravity and the acceleration of the Universe, Phys. Rev. D 81, 127301 (2010); Arxiv: 1005.3039.
  16. R. Ferraro and F. Fiorini, Nontrivial frames for f(T) theories of gravity and beyond, Phys. Lett. B 702, 75 (2011); Arxiv: 1103.0824.
  17. M. E. Rodrigues, M. Hamani, Daouda and M. J. S. Houndjo, Inhomogeneous Universe in f(T) theory, Arxiv: 1205.0565.
  18. M. E. Rodrigues, M. J. S. Houndjo, D. Saez-Gomez, and F. Rahaman, Anisotropic Universe models in f(T) gravity, Phys. Rev. D 86, 104059 (2012); Arxiv: 1209.4859.
For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page