Causal cones, cone preserving transformations and causal structure in special and general relativity

Sujatha Janardhan1, R.V. Saraykar2

Abstract

We present a short review of a geometric and algebraic approach to causal cones and describe cone preserving transformations and their relationship with the causal structure related to special and general relativity. We describe Lie groups, especially matrix Lie groups, homogeneous and symmetric spaces and causal cones and certain implications of these concepts in special and general relativity, related to causal structure and topology of space-time. We compare and contrast the results on causal relations with those in the literature for general space-times and compare these relations with K-causal maps. We also describe causal orientations and their implications for space-time topology and discuss some more topologies on space-time which arise as an application of domain theory.

References

  1. A. D. Alexandrov, Annali di Mathematica Pura et Aplicata 103, 229 (1957).
  2. A. D. Alexandrov, Uspekhi Math. Nauk 5(3), 187 (1950).
  3. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time (Cambridge Univ Press, 1973).
  4. R. Wald, General Relativity (Univ of Chicago Press, 1984).
  5. P. S. Joshi, Global Aspects in Gravitation and Cosmology (Oxford Science Publications, 1993).
  6. F. Dowker, J. Henson, and R. Sorkin, Mod. Phys. Lett. A19, 1829 (2004).
  7. R. D. Sorkin and E. Woolgar, Class. Quantum Grav. 3, 1971 (1996).
  8. S. Janardhan and R. V. Saraykar, Pramana-J. of Physics 70, 587 (2008).
  9. S. Janardhan and R. V. Saraykar, Int. J. Math. Sci. and Engg. Appls. 4(IV), 47 (2010).
  10. E. Minguzzi, Comm. Math. Phys. 290(1), 239 (2009).
  11. E. Minguzzi, Commun. Math. Phys, 288(3) 801 (2009).
  12. K. Martin and P. Panangaden, Commun. Math. Phys. 267, 563 (2006).
  13. V. A. Truong and L. Tuncel, Mathematical Programming 100(2), 295 (2002).
  14. R. D. Luce and R. Raifa, Games and Decisions: Introduction and Critical Survey (Dover, New York, 1989).
  15. V. Kreinovich and O. Kosheleva, Int. J. Theor. Phys. 47(4), 1083 (2008).
  16. V. Kreinovich and O. Kosheleva, Theoretical Computer Science 405(1–2), 50 (2008).
  17. E. Minguzzi and M. Sanchez, ESI Lect. Math. Phys. 299 (2006).
  18. R. Gilmore, Lie Groups, Physics, and Geometry (Cambridge University Press, 2008)
  19. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press, 1978)
  20. J. A. Wolf, Spaces of Constant Curvature (McGraw-Hill, 1967).
  21. A. Knapp, Lie Groups Beyond an Introduction (Birkhauser, 2002).
  22. L. Fuchs, Partially Ordered Algebraic Systems (Pergamon Press, 1963).
  23. J. Hilgert and K. H. Neeb, Japan. J. Math. 21, 117 (1995).
  24. I. Chajda and S. Hoskava, Miskolc Mathematical Notes 6(2), 147 (2005).
  25. J. A. Lester, Proc. Cambridge Math. Soc. 81, 455 (1977).
  26. J. A. Lester, Annals of Discrete Mathematics, 18, 567 (1983).
  27. F. Zapata and V. Kreinovich, Studia Logica 87, 1 (2011).
  28. C. Gheorghe and E. Mihul, Commun. Math. Phys. 14, 165 (1969).
  29. R. Penrose, Techniques of Differential Topology in Relativity (AMS Colloquium Publications, 1972).
  30. A. Garcia-Parrado and J. M. Senovilla, grqc/0308091.
  31. A. Garcia-Parrado and J. M. Senovilla, Class. Quantum Grav. 20, 625 (2003).
  32. S. W. Hawking and R. K. Sachs, Commun. Math. Phys. 35, 287 (1974).
  33. H. F. Dowkar, R. S. Garcia, and S. Surya, Class. Quantum Grav. 17, 697 (2009).
  34. E. C. Zeeman, J. Math. Phys. 5, 490 (1964).
  35. H. J. Borchers and G. C. Hegerfeldt, Commun. Math. Phys. 28, 259 (1972).
  36. M. Rainer, J.Math. Phys. 40, 6589 (1999); Erratum: ibid, 41, 3303 (2000).
  37. S. Abramsky and A. Jung, Domain Theory, in Handbook of Logic in Computer Science, Ed. by S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Vol. III (Oxford University Press, 1994).
  38. A. Krasinski, Inhomogeneous Cosmological Models (Cambridge Univ. Press, New Ed., 2006).
  39. B. Carter, Gen. Rel. Grav. 1, 349 (1971).
  40. E. H. Kronheimer, Gen. Rel. Grav. 1, 261 (1971).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page