Some remarks on Bianchi type-II, VIII, and IX models

Bijan Saha1

Abstract

Within the scope of anisotropic non-diagonal Bianchi type-II, VIII, and IX spacetimes it is shown that the off-diagonal components of the Einstein equations impose severe restrictions on the components of the energy-momentum tensor (EMT) in general. We begin with a metric with three functions of time, a(t), b(t), and c(t), and two spatial ones, f(z) and h(z). It is shown that if the EMT is assumed to be diagonal, and f = f(z), in all cosmological models in question bc, and the matter distribution is isotropic, i.e., T11 = T22 = T33. If f = const, which is a special case of BII models, the matter distribution may be anisotropic, but only the z axis is distinguished, and in this case b(t) is not necessarily proportional to c(t).

References

  1. T. Christodoulakis, G. Kofinas, E. Korfiatis, G. O. Papadopoulos, and A. Paschos, J. Math. Phys. 42(8), 3580 (2001).
  2. U. S. Nilsson and C. Uggla, J. Math. Phys. 38(5), 2611 (1997).
  3. S. Ram and P. Singh, Astrophys. Space Sci. 201, 29 (1993).
  4. D. N. Pant and S. Oli, Astrophys. Space Sci. 281, 623 (2002).
  5. C. P. Singh and S. Kumar, Astrophys. Space Sci. 310, 31 (2007).
  6. J. A. Belinchon, Astrophys. Space Sci. 323, 185 (2009).
  7. J. A. Belinchon, Astrophys. Space Sci. 323, 307 (2009).
  8. A. Pradhan, P. Ram, and R. Singh, Astrophys. Space Sci. 331, 275 (2011).
  9. S. Kumar,Mod. Phys. Lett. A 26, 779 (2011).
  10. M. K. Yadav and V. C. Jain, Astrophys. Space Sci. 331, 343 (2011)
  11. P. S. Letelier, Phys. Rev. D 28, 2414 (1983).
  12. P. Chauvet and H. N. Nunez-Yepez, Astrophys. Space Sci. 178, 165 (1991).
  13. R. Venkateswarlu and D. R. K. Reddy, Astrophys. Space Sci. 172, 143 (1990).
  14. R. Venkateswarlu and D. R. K. Reddy, Astrophys. Space Sci. 182, 97 (1991).
  15. P. C. Vaidya and L. K. Patel, Pramana J. Phys. 27, 63 (1986).
  16. K. Shanthi and V. U. M. Rao, Astrophys. Space Sci. 179, 163 (1991).
  17. D. Saez and V. J. Ballester, Phys. Lett. A 113, 467 (1985).
  18. D. R. K. Reddy and R. L. Naidu, Astrophys. Space Sci. 312, 99 (2007).
  19. A. K. Banerjee and N. O. Santos, Gen. Relat. Grav. 16, 217 (1984).
  20. R. Bali and M. K. Yadav, Pramana J. Phys. 64, 187 (2005).
  21. J. K. Singh and N. K. Sharma, Int. J. Theor. Phys. 49, 2902 (2010).
  22. B. Saha, Cent. European J. Phys. 9, 939 (2011).
  23. Yu. P. Rybakov, G. N. Shikin, Yu. A. Popov, and B. Saha, Cent. European J. Phys. 9(5), 1165 (2011).
  24. Yu. P. Rybakov, G. N. Shikin, Yu. A. Popov, and B. Saha, arXiv: 1008.2113; The materials of the Russian School "Mathematical Modeling in Systems of Computer Mathematics" and the Russian Seminar "Nonlinear Fields in Gravitation and Cosmology," Yalchik-Kazan (2010), pp. 148-153.
  25. B. Saha, Phys. Rev. D 69, 124006 (2004).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page