The role of observers in the measurement of teleparallel gravitoelectromagnetic fields in Schwarzschild spacetime

E.P. Spaniol, L.R.A. Belo, V.C.de Andrade, J.A.de Deus1

Abstract

In the context of the teleparallel equivalent of general relativity (TEGR) we investigate the role of local observers, associated with tetrad fields, in the description of the gravitational interaction through the concepts of the gravitoelectric (GE) and gravitomagnetic (GM) fields. We start by analyzing the gravitoelectromagnetic (GEM) fields obtained from an observer freely falling in Schwarzschild space-time. Then, we investigate whether it is possible to distinguish between this situation and that of an observer at rest in Minkowski space-time. We conclude that, although there are non-zero components of the fields obtained in the case of a free fall, its dynamical effect, measured by the gravitational Lorentz force, is zero. Moreover, the gravitational field energy obtained from the GEM fields for an observer freely falling in Schwarzschild spacetime, is zero. These results are in complete agreement with the equivalence principle.

References

  1. B. Mashhoon, Int. J. Mod. Phys. D 14, 12 (2005); J. C. Maxwell, Phil. Trans. 155, 492 (1865); G. Holzmuller, Z. Moth. Phys. 15, 69 (1870); F. Tisserand, Compt. Rend. 75, 760 (1872); 110, 313 (1890); B. Mashhoon, F. W. Hehl, and D. S. Theiss, Gen. Rel. Grav. 16, 8 (1984); I. Ciufolini and J. A. Wheeler, Gravitation and Inertia (Princeton University Press, Princeton, 1951).
  2. R. Owen et al, Phys. Rev. Lett. 106, 151101 (2011).
  3. C.W. F. Everitt et al., Phys. Rev. Lett. 106, 221101 (2011).
  4. B. Mashhoon, Gravitoelectromagnetism: A brief review, gr-qc/0311030); Measuring gravitomagnetism: a challenging enterprise (Nova Publishers, Hauppauge NY, 2007), p. 29-39; gr-qc/0311030; Phys. Lett. A 292, 49 (2001); Phys. Rev. D 65, 064025 (2002); Int. J. Mod. Phys. D. 14, 12 (2005).
  5. D. Bini, C. Cherubini, C. Chicone, and B. Mashhoon, Gravitational induction, ArXiv: 0803.0390.
  6. T. Damour, M. Soffel, and C. Xu, Phys. Rev. D 43, 3272 (1991); T. W. Murphy Jr., K. Nordtvedt, and S. G. Turyshev, Phys. Rev. Lett. 98, 071102 (2007); L. F. Costa and C. A. R. Herdeiro, Relativity in fundamental astronomy, Proc. IAU Symposium No. 261 (2009); M. Soffel, S. Klioner, J. Muller, and L. Biskupek, Phys. Rev. D 78, 024033 (2008).
  7. E. P. Spaniol and V. C. Andrade, Int. Jour.Mod. Phys. D 19, 489 (2010).
  8. J. W. Maluf, F. F. Faria, and S. C. Ulhoa, Class. Quantum Grav. 34, 2743 (2007); F. H. Hehl, J. Lemke, and E. W. Mielke, Two lectures on fermions and gravity, in: Geometry and Theoretical Physics, ed. J. Debrus and A. C. Hirshfeld (Springer, Berlin-Heidelberg, 1991).
  9. V. C. de Andrade and J. G. Pereira, Phys. Rev. D 56, 4689 (1997).
  10. J. W. Maluf, J. Math. Phys. 35, 335 (1994).
  11. V. C. de Andrade, L. C. T. Guillen, and J. G. Pereira, Phys. Rev. Lett. 84, 4533 (2000).
  12. J. B. Hartle, Gravity: An Introduction to Einstein's General Relativity (Addison-Wesley, San Francisco, 2003).
  13. C. Schmid, Phys. Rev. D 74, 044031 (2006).
  14. J. W. Maluf, Ann. Phys. (Leipizig) 14, 723 (2005).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page