Tetrads in Yang-Mills geometrodynamics

Alcides Garat1

Abstract

The relationship between gauge and gravity amounts to understanding underlying new geometric local structures. These structures are new tetrads specially devised for Yang-Mills theories, Abelian and Non-Abelian in 4D Lorentzian spacetimes. In the present paper, a new tetrad is introduced for the Yang-Mills SU(2) - U(1) formulation. These new tetrads establish a link between local groups of gauge transformations and local groups of spacetime transformations. New theorems are proved regarding isomorphisms between local internal SU(2) - U(1) groups and local tensor products of spacetime LB1 and LB2 groups of transformations. The new tetrads and the stress-energy tensor allow for introduction of three new local gauge-invariant objects. Using these new gauge invariant objects and in addition a new general local duality transformation, a new algorithm for gauge-invariant diagonalization of the Yang-Mills stress-energy tensor is developed.

References

  1. A. Garat, J. Math. Phys. 46, 102502 (2005); A. Garat, Erratum: Tetrads in geometrodynamics, J. Math. Phys. 55, 019902 (2014).
  2. C. Misner and J. A. Wheeler, Annals of Physics 2, 525 (1957).
  3. J. A. Schouten, Ricci Calculus: An Introduction to Tensor Calculus and Its Geometrical Applications (Springer, Berlin, 1954).
  4. C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973).
  5. C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
  6. R. Utiyama, Phys. Rev. 101, 1597 (1956).
  7. S. Deser and C. Teitelboim, Phys. Rev. D 13 number 6, 1592 (1976).
  8. S. Weinberg, Phys. Rev. 139, B597 (1965).
  9. L. ORaifeartagh, Phys. Rev. 139, B1052 (1965).
  10. S. Coleman and J. Mandula, Phys. Rev. 159, N5 1251 (1967).
  11. M. Kaku, Quantum Field Theory: A Modern Introduction (Oxford University Press, 1993).
  12. M. Carmeli, Classical Fields: General Relativity and Gauge Theory (J. Wiley & Sons, New York, 1982).
  13. Y. Choquet-Bruhat and C. DeWitt-Morette, Analysis, Manifolds and Physics (Elsevier Science Publishers B.V., 1987).
  14. W. Greiner and B. Mueller, Quantum Mechanics, Symmetries (Springer Verlag Gmbh, 1989).
  15. D. Griffiths, Introduction to elementary particles (John Wiley & Sons, Inc., 1987).
  16. W. Greiner and B. Mueller, Gauge Theory of Weak Interactions (Springer Verlag Gmbh, 1996).
  17. S. Weinberg, Gravitation and Cosmology (John Wiley, 1972).
  18. R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (John Wiley & Sons, 1974).
  19. L. ö?lvarez-Gaumö? and M. A. Vö?zquez-Mozo, Introductory Lectures on Quantum Field Theory (arXiv:hep-th/0510040).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page