Note on the properties of exact solutions in Lovelock gravity

Sergey A. Pavluchenko1, Alexey V. Toporensky2

Abstract

We study the properties of cosmological solutions for a flat multidimensional anisotropic Universe in Lovelock gravity. Particular attention is paid to some features of the solutions that have no counterparts in analogous solutions of General Relativity (GR). We consider exponential and so-called generalized Milne solutions and discuss the reason for these solutions to exist in Lovelock gravity and do not exist in GR.

References

  1. D. Lovelock, J. Math. Phys. 12, 498 (1971).
  2. F. Mö?ller-Hoissen, Phys. Lett. 163B, 106 (1985).
  3. J. Madore, Phys. Lett. 111A, 283 (1985); J. Madore, Class. Quant. Grav. 3, 361 (1986); F. Mö?ller-Hoissen, Class. Quant. Grav. 3, 665 (1986).
  4. N. Deruelle, Nucl. Phys. B327, 253 (1989).
  5. N. Deruelle and L. Fariö?a-Busto, Phys. Rev. D 41, 3696 (1990).
  6. T. Verwimp, Class. Quant. Grav. 6, 1655 (1989); G. A. Mena Marugö?n, Phys. Rev. D 42, 2607 (1990); Phys. Rev. D 46, 4340 (1992).
  7. A. V. Toporensky and P. V. Tretyakov, Grav. Cosmol. 13, 207 (2007).
  8. S.A. Pavluchenko, Phys. Rev. D 80, 107501 (2009).
  9. R. Chingagbam, M. Sami, P. Tretyakov, and A. Toporensky, Phys. Lett. B 661, 162 (2008); S. A. Pavluchenko and A. V. Toporensky, Mod. Phys. Lett. A 24, 513 (2009).
  10. E. Elizalde et al., Phys. Lett. B 644, 1 (2007).
  11. S. A. Pavluchenko and A. V. Toporensky, Mod. Phys. Lett. A 24, 513 (2009).
  12. I. Kirnos, A. Makarenko, S. Pavluchenko, and A. Toporensky, Gen. Rel. Grav. 42, 2633 (2010).
  13. I. Kirnos, S. Pavluchenko, and A. Toporensky, Grav. Cosmol. 16, 274 (2010).
  14. D. Chirkov and A. Toporensky, Grav. Cosmol. 19, 275 (2013).
  15. V. D. Ivashchuk, Grav. Cosmol. 16, 118 (2010).
  16. V. D. Ivashchuk, Int. J. Geom. Meth. Mod. Phys. 7, 797 (2010).
  17. A. H. Taub, Ann. Math. 53, 472 (1951).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page