Extended axion electrodynamics: Anomalous dynamo-optical response induced by gravitational pp-waves

A.B. Balakin, T.Yu. Alpin1

Abstract

We extend the Einstein-Maxwell-axion theory, including into the Lagrangian cross-terms of dynamo-optical type, which are quadratic in the Maxwell tensor, linear in the covariant derivative of the macroscopic velocity four-vector Ui, and linear in the pseudoscalar (axion) field φ or its gradient fourvector. We classify the new terms with respect to irreducible elements of the covariant derivative of Ui of the electromagnetically active medium: the expansion scalar, acceleration four-vector, shear and vorticity tensors. Master equations of the extended axion electrodynamics are used for the description of the response of an axionically active electrodynamic system, induced by a pp-wave gravitational background. We show that this response has a critical nature, i.e., the electric and magnetic fields, dynamo-optically coupled to the axions, anomalously grow under the influence of the external pp-wave gravitational field.

References

  1. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
  2. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
  3. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
  4. W.-T. Ni, Phys. Rev. Lett. 38, 301 (1977).
  5. P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).
  6. G. G. Raffelt, Phys. Rep. 198, 1 (1990).
  7. M. S. Turner, Phys. Rep. 197, 67 (1990).
  8. E. P. S. Shellard and R. A. Battye, Phys. Rep. 307, 227 (1998).
  9. M. Yu. Khlopov and S. G. Rubin, Cosmological Pattern of Microphysics in Inflationary Universe (Kluwer Academic Publishers, Dordrecht, 2004).
  10. R. Battesti et al., Lect. Notes Phys. 741, 199 (2008).
  11. G. Zavattini et al., Int. J. Mod. Phys. A 28, 1260017 (2012).
  12. A. S. Chou et al. (GammeV Collaboration), Phys. Rev. Lett. 100, 080402 (2008).
  13. M. Arik et al. (CAST Collaboration), Phys. Rev. Lett. 107, 261302 (2011).
  14. P. Pugnat et al. (OSQAR Collaboration), Phys. Rev. D 78, 092003 (2008).
  15. S.-J. Chen, H.-H. Mei, and W.-T. Ni, Mod. Phys. Lett. A 22, 2815 (2007).
  16. R. Battesti et al., Phys. Rev. Lett. 105, 250405 (2010).
  17. A. B. Balakin and W.-T. Ni, Class.Quantum Grav. 27, 055003 (2010).
  18. A. B. Balakin and N. O. Tarasova, Grav. Cosmol. 18, 54 (2012).
  19. A. B. Balakin, V. V. Bochkarev, and N. O. Tarasova, Eur. Phys. Journal C 72, 1895 (2012).
  20. A. B. Balakin and L. V. Grunskaya, Rep. Math. Phys. 71, 45 (2013).
  21. A. B. Balakin, R. K. Muharlyamov, and A. E. Zayats, Eur. Phys. Journal C 73, 2647 (2013).
  22. A. B. Balakin, R. K. Muharlyamov, and A. E. Zayats, Class. Quantum Grav. 31, 025005 (2014).
  23. A. B. Balakin and W.-T. Ni, Class.Quantum Grav. 31, 105002 (2014; arxiv: 1403.6711).
  24. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Butterworth Heinemann, Oxford, 1996).
  25. T. Yu. Alpin and A. B. Balakin, Grav. Cosmol. 12, 307 (2006).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page