Galactic cluster in the presence of dark energy

G.S. Bisnovatyi-Kogan1, G.S. Bisnovatyi-Kogan2

Abstract

A solution for cosmological expansion in the presence of dark matter is presented, and observational results from which a conclusion on the present value of the cosmological constant is obtained, are discussed. A solution is obtained for hydrodynamic outflow of polytropic gas from a gravitating center, in the presence of uniform Dark Energy (DE). The antigravity of DE is enlightening the outflow and makes the outflow possible at smaller initial temperature at the same density. The main property of the wind in the presence of DE is its unlimited acceleration after passing the critical point. Applying this solution to winds from galaxy clusters, we suggest that a collision of a strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind, could lead to the formation of highest energy cosmic rays.

References

  1. G. S. Bisnovatyi-Kogan, Relativistic Astrophysics and Physical Cosmology (URSS, Moscow, 2011, in Russian).
  2. G. S. Bisnovatyi-Kogan and A. D. Chernin, Astroph. Space Sci. 338, 337 (2012).
  3. G. S. Bisnovatyi-Kogan and M. Merafina, MNRAS 434, 3628 (2013).
  4. A. D. Chernin, Physics-Uspekhi 44, 1099 (2001).
  5. A. D. Chernin, Physics-Uspekhi 51, 267 (2008).
  6. A. D. Chernin, G. S. Bisnovatyi-Kogan, P. Teerikorpi, et al., Astron. Astroph. 553, 101 (2013).
  7. D. Clove et al., Ap. J. 648, L109 (2006).
  8. D. Eichler and V. V. Usov, Ap. J. 402, 271 (1993).
  9. E. B. Gliner, Sov. Phys. JETP 22, 378 (1966).
  10. I. D. Karachentsev et al., Astron. J. 131, 1361 (2006).
  11. D. Larson et al., Ap. J. Suppl. 192, 16 (2011).
  12. M. Merafiva, G. S. Bisnovatyi-Kogan, and S. O. Tarasov, Astron. Astroph. 541, 84 (2012).
  13. I. E. N. Parker, Interplanetary Dynamical Processes (NY, Interscience, 1963).
  14. S. Perlmutter et al., Ap. J. 483, 565 (1997).
  15. S. Perlmutter et al., Ap. J. 517, 565 (1999).
  16. Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. ArXiv: 1303.5076.
  17. W. H. Press et al., Numerical Recipes in Fortran 77: The Art of Scientific Computing (Cambridge Univ. Press, 1992).
  18. A. G. Riess et al., Astron. J. 116, 1009 (1998).
  19. A. D. Sakharov, Sov. Phys. JETP 22, 241 (1966).
  20. P. Schmid et al., Ap. J. 507, 46 (1998).
  21. D. N. Spergel et al., Ap. J. Suppl. 148, 175 (2003).
  22. D. N. Spergel, R. Flauger, and R. Hlo┼żek, arXiv: 1312.3313.
  23. K. P. Staniukovich, Unsteady Motions of Continua [in Russian], (Gostekhizdat, Moscow, 1955, in Russian).
  24. M. Tegmark et al. Phys. Rev. D 69, 103501 (2004).
  25. M. Watanabe et al. Ap. J. 527, 80 (1999).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page