Multidimensional gravity, flux and black brane solutions governed by polynomials

V.D. Ivashchuk, V.N. Melnikov1, V.D. Ivashchuk, V.N. Melnikov2

Abstract

Two families of composite black brane solutions are overviewed, fluxbrane and black brane ones, in a model with scalar fields and fields of forms. The metric of any solution is defined on a manifold which contains a product of several Ricci-flat "internal" spaces. The solutions are governed by moduli functions Hs (for fluxbranes) and Hs (for black branes), obeying nonlinear differential equations with certain boundary conditions. The master equations for Hs and Hs are equivalent to Toda-like equations and depend on a nondegenerate matrix A related to brane intersection rules. The functions Hs and Hs, as was conjectured and confirmed (at least partly) earlier, should be polynomials in proper variables if A is a Cartan matrix of some semisimple finite-dimensional Lie algebra. The fluxbrane polynomials Hs were shown to be used for the construction of black brane polynomials Hs. This approach is illustrated by examples of nonextremal electric black p-brane solutions related to Lie algebrasA2, C2, and G2.

References

  1. V. N. Melnikov, Multidimensional Classical and Quantum Cosmology and Gravitation, Exact Solutions and Variations of Constants. CBPF-NF-051/93, Rio de Janeiro, 1993; V. N. Melnikov, in: 'Cosmology and Gravitation', ed. M. Novello, Editions Frontieres, Singapore, 1994, p. 147.
  2. V. N. Melnikov, Multidimensional Cosmology and Gravitation, CBPF-MO-002/95, Rio de Janeiro, 1995, 210 p.; V. N. Melnikov, In: Cosmology and Gravitation. II, ed. M. Novello, Editions Frontieres, Singapore, 1996, p. 465.
  3. V. N. Melnikov, Exact Solutions in Multidimensional Gravity and Cosmology III. CBPF-MO-03/02, Rio de Janeiro, 2002, 297 p.
  4. K. P. Staniukovich and V. N. Melnikov, Hydrodynamics, Fields and Constants in the Theory of Gravitation. Energoatomizdat, Moscow, 1983, 256 pp. (in Russian); English version of a part of the book: V. N. Melnikov, Fields and Constants in the Theory of Gravitation. CBPF-MO-02/02, Rio de Janeiro, 2002, 134 p.
  5. V. N. Melnikov, Int. J. Theor. Phys. 33, 1569 (1994).
  6. V. de Sabbata, V. N. Melnikov and P. I. Pronin, Prog. Theor. Phys. 88, 623 (1992).
  7. V. N. Melnikov. In: Gravitational Measurements, Fundamental Metrology and Constants, eds. V. de Sabbata and V. N. Melnikov (Kluwer Academic Publ., Dordtrecht, 1988), p. 283.
  8. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 19, 171 (2013); arXiv: 1306.6521.
  9. V. D. Ivashchuk and V. N. Melnikov, Eur. Phys. J. C 74: 2805, 1 (2014); arXiv: 1310.4451.
  10. V. N. Melnikov, Gravity as a Key Problem of the Millenium. Proc. 2000 NASA/JPL Conference on Fundamental Physics in Microgravity, CD-version, NASA Document D-21522, 2001, p.4.1–4.17, Solvang, CA, USA; gr-qc/0007067.
  11. V. N. Melnikov, Gravitation and Cosmology as Key Problems of the Millennium. Albert Einstein Century International Conference. AIP Conference Proceedings. Eds. Jean-Michel Alimi and Andre Fuzfa, 2006, No. 861, p. 109.
  12. R. Blumenhagen, M. Cvetic, P. Langacker, G. Shiu, Ann. Rev. Nucl. Part. Sci. 55, 71 (2005); hep-th/0502005.
  13. G. W. Gibbons and D. L. Wiltshire, Nucl. Phys. B 287, 717 (1987); hep-th/0109093.
  14. G. Gibbons and K. Maeda, Nucl. Phys. B 298, 741 (1988).
  15. F. Dowker, J. P. Gauntlett, G. W. Gibbons, and G. T. Horowitz, Phys. Rev. D 53, 7115 (1996); hep-th/9512154.
  16. D. V. Gal'tsov and O. A. Rytchkov, Phys. Rev. D 58, 122001 (1998); hep-th/9801180.
  17. C.-M. Chen, D.V. Gal'tsov, and S. A. Sharakin, Grav. Cosmol. 5, 45 (1999); hep-th/9908132.
  18. M. S. Costa and M. Gutperle, JHEP 0103, 027 (2001); hep-th/0012072.
  19. P. M. Saffin, Phys. Rev. D 64, 024014 (2001); gr-qc/0104014.
  20. M. Gutperle and A. Strominger, JHEP 0106, 035 (2001); hep-th/0104136.
  21. C. M. Chen, D. V. Gal'tsov, and P. M. Saffin, Phys. Rev. D 65, 084004 (2002); hep-th/0110164.
  22. R. Emparan and M. Gutperle, JHEP 0112, 023 (2001); hep-th/0111177.
  23. V. D. Ivashchuk, Class. Quantum Grav. 19, 3033 (2002); hep-th/0202022.
  24. M. A. Melvin, Phys. Lett. 8, 65 (1964).
  25. I.S. Goncharenko, V. D. Ivashchuk, and V. N. Melnikov, Grav. Cosmol. 13, 262 (2007); math-ph/0612079.
  26. V. D. Ivashchuk, Class. Quantum Grav. 20, 261 (2003); hep-th/0208101.
  27. K. A. Bronnikov, V. D. Ivashchuk, and V. N. Melnikov, Grav. Cosmol. 3, 203 (1997); gr-qc/9710054.
  28. K. A. Bronnikov, Grav. Cosmol. 4, 49 (1998); hep-th/9710207.
  29. S. Cotsakis, V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 5, 52 (1999); gr-qc/9902148.
  30. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 5, 313 (1999); gr-qc/0002085.
  31. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 6, 27 (2000); hep-th/9910041.
  32. V. D. Ivashchuk and V. N. Melnikov, Class. Quantum Grav. 17, 2073 (2000); math-ph/0002048.
  33. M. A. Grebeniuk, V. D. Ivashchuk, and S.-W. Kim, J. Math. Phys. 43, 6016 (2002); hep-th/0111219.
  34. M.A. Grebeniuk, V. D. Ivashchuk, and V. N. Melnikov, Phys. Lett. B 543, 98 (2002); hep-th/0208083.
  35. V. D. Ivashchuk and V. N. Melnikov, Class. Quantum Grav. 18, R87 (2001); hep-th/0110274.
  36. M. Cvetic and A. Tseytlin, Nucl. Phys. B 478, 181 (1996); hep-th/9606033.
  37. I. Ya. Aref'eva, M. G. Ivanov, and I.V. Volovich, Phys. Lett. B 406, 44 (1997); hep-th/9702079.
  38. N. Ohta, Phys. Lett. B 403, 218 (1997); hep-th/9702164.
  39. V. D. Ivashchuk and V. N. Melnikov, J. Math. Phys. 39, 2866 (1998); hep-th/9708157.
  40. V. D. Ivashchuk and S.-W. Kim, J. Math. Phys. 41, 444 (2000); hep-th/9907019.
  41. M. A. Olshanetsky and A. M. Perelomov, Invent. Math. 54, 261 (1979).
  42. B. Kostant, Adv. inMath. 34, 195 (1979).
  43. A. Anderson, J. Math. Phys. 37, 1349 (1996); hep-th/9507092.
  44. A. A. Golubtsova and V. D. Ivashchuk, On calculation of fluxbrane polynomials corresponding to classical series of Lie algebras, arXiv: 0804.0757.
  45. A. A. Golubtsova and V. D. Ivashchuk, Grav. Cosmol. 15, 144 (2009); arXiv: 1009.3667.
  46. H. Lü and W. Yang, SL(n, R)-Toda Black Holes, arXiv: 1307.2305.
  47. J. Fuchs and C. Schweigert, Symmetries, Lie algebras and Representations. A graduate course for physicists (Cambridge University Press, Cambridge, 1997).
  48. H. Lü, J. Maharana, S. Mukherji, and C. N. Pope, Phys. Rev. D 57, 2219 (1997); hep-th/9707182.
  49. V.D. Ivashchuk, Black brane solutions governed by fluxbrane polynomials, arXiv: 1401.0215.
  50. V. D. Ivashchuk, S. A. Kononogov and V. N. Melnikov, Grav. Cosmol. 14, 235 (2008); arXiv: 0901.0025.
  51. A. A. Golubtsova, Grav. Cosmol. 16, 298 (2010).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page