The genuine short GRB 090227B and the disguised by excess GRB 090510

Marco Muccino, Carlo Luciano Bianco, Luca Izzo, Yu Wang, Maxime Enderli, Milos Kovacevic, Giovanni Battista Pisani, Remo Ruffini1, Marco Muccino, Carlo Luciano Bianco, Luca Izzo, Yu Wang, Remo Ruffini2, Maxime Enderli, Milos Kovacevic, Giovanni Battista Pisani, Remo Ruffini3, Ana Virginia Penacchioni, Remo Ruffini4

Abstract

GRB 090227B and GRB 090510, traditionally classified as short gamma-ray Bursts (GRBs), indeed originate from different systems. For GRB 090227B we inferred a total energy of the e+ e- plasma Etote+e- = (2.83 ± 0.15) × 1053 erg, a baryon load of B = (4.1 ± 0.05) × 10-5, and a CircumBurstMedium (CBM) average density <nCBM> = (1.90 ± 0.20) × 10-5 cm-3. From these results we have assumed the progenitor of this burst to be a symmetric neutron stars (NSs) merger with masses m = 1.34 M, radii R = 12.24 km. GRB 090510, instead, has Etote+e- = (1.10 ± 0.06) × 1053 erg, B = (1.45 ± 0.28) × 10-3, implying a Lorentz factor at transparency of Γ = (6.7 ± 1.7) × 102, which are characteristic of the long GRB class, and a very high CBM density, <nCBM> = (1.85 ± 0.14) × 103 cm-3. The joint effect of the high values of Γ and of <nCBM> compresses in time and "inflates" in intensity in an extended afterglow, making appear GRB 090510 as a short burst, which we here define as "disguised short GRB by excess" occurring an overdense region with 103 cm-3.

References

  1. R. W. Klebesadel, in Gamma-Ray Bursts—Observations, Analyses and Theories, ed. C. Ho, R. I. Epstein, and E. E. Fenimore (Cambridge University Press, 1992), p. 161–168.
  2. J.-P. Dezalay et al., in American Institute of Physics Conference Series, ed. W. S. Paciesas and G. J. Fishman, 265, 304 (1992).
  3. C. Kouveliotou et al., ApJ Lett. 413, L101 (1993).
  4. M. Tavani, ApJ Lett. 497, L21 (1998), astro-ph/9802192.
  5. N. Gehrels et al., Nature (London) 437, 851 (2005), astro-ph/0505630.
  6. J. P. Norris and J. T. Bonnell, ApJ 643, 266 (2006), astro-ph/0601190.
  7. R. Ruffini et al., ApJ Lett. 555, L117 (2001), astro-ph/0106534.
  8. R. Ruffini et al., ApJ Lett. 555, L113 (2001), astro-ph/0106532.
  9. R. Ruffini et al., ApJ Lett. 555, L107 (2001), astro-ph/0106531.
  10. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, Phys. Rev. Lett. 99, 125003 (2007), arXiv: 0707.3250.
  11. R. Ruffini, J. D. Salmonson, J. R. Wilson, and S. Xue, A&A 359, 855 (2000), astro-ph/0004257.
  12. M. G. Bernardini et al., A&A 474, L13 (2007).
  13. L. Caito et al., A&A 521, A80+ (2010), arXiv: 1006.4842.
  14. G. de Barros et al., A&A 529, A130 (2011), arXiv: 1101.5612.
  15. R. Ruffini et al., ApJ Lett. 581, L19 (2002), astro-ph/0210648.
  16. M. Muccino et al., ApJ 763, 125 (2013), arXiv: 1205.6600.
  17. M. Muccino et al., ApJ 772, 62 (2013), arXiv: 1306.3467.
  18. S. Guiriec, GCN 8921, 1 (2009).
  19. S. Golenetskii et al., GCN 8926, 1 (2009).
  20. D. Band et al., ApJ 413, 281 (1993).
  21. S. Guiriec, V. Connaughton, and M. Briggs, GCN 9336, 1 (2009).
  22. M. Ohno and V. Pelassa, GCN 9334, 1 (2009).
  23. E. A. Hoversten et al., GCN 9331, 1 (2009).
  24. F. Longo et al., GCN 9343, 1 (2009).
  25. S. Golenetskii et al., GCN 9344, 1 (2009).
  26. N. Ohmori et al., GCN 9355, 1 (2009).
  27. A. Rau, S. McBreen, and T. Kruehler, GCN 9353, 1 (2009).
  28. M. Ackermann et al., ApJ 716, 1178 (2010), arXiv: 1005.2141.
  29. C. L. Bianco and R. Ruffini, ApJ Lett. 605, L1 (2004), astro-ph/0403379.
  30. B. Patricelli et al., ApJ 756, 16 (2012), arXiv: 1206.5605.
  31. R. Belvedere et al., Nucl. Phys. A 883, 1 (2012); http://www.sciencedirect.com/science/article/pii/S0375947412001029.
  32. J. A. Rueda and R. Ruffini, arXiv: 1205.6915.
  33. S. I. Blinnikov, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, Sov.Astron. Lett. 10, 177 (1984).
  34. B. Paczynski, ApJ Lett. 494, L45 (1998), astro-ph/9710086.
  35. W. Fong, E. Berger, and D. B. Fox, ApJ 708, 9 (2010), arXiv: 0909.1804.
  36. E. Berger, New Astron. Rev. 55, 1 (2011), arXiv: 1005.1068.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page