Supernovae and gamma-ray bursts in the induced gravitational collapse paradigm

Remo Ruffini1, Remo Ruffini2, Remo Ruffini3, Remo Ruffini4

Abstract

I review recent progress in the understanding of long, energetic (1052 - 1054 erg) gamma-ray bursts (GRBs) associated to supernovae (SN) Ib/c. This occurrence is explained within the Induced Gravitational Collapse (IGC) paradigm, following the sequence: 1) an initial binary system consists in a compact Iron-Carbon-Oxygen (FeCO) core and a neutron star (NS); 2) the FeCO core explodes, giving origin to a SN, and part of the SN ejecta accretes onto the NS which reaches its criticalmass and collapses to a black hole (BH) giving rise to a long GRB; 3) a new NS (ν-NS) is generated by the SN as a remnant. Observational consequences of this scenario are outlined.

References

  1. R.B.E. Lovelace, J. M. Sutton, and H. D. Craft, IAU Circ 2113, 1 (1968).
  2. A. Finzi and R. A. Wolf, ApJ 153, 865 (1968).
  3. H. Gursky and R. Ruffini, eds., Neutron stars, black holes and binary X-ray sources; Proceedings of the Annual Meeting, San Francisco, Calif., February 28, 1974, vol. 48 of Astrophysics and Space Science Library (1975).
  4. T. Damour and R. Ruffini, Physical Review Letters 35, 463 (1975).
  5. D. Christodoulou and R. Ruffini, Phys. Rev. D 4, 3552 (1971).
  6. G. S. Bisnovatyi-Kogan, V. S. Imshennik, D. K. Nadyozhin, and V. M. Chechetkin, Astrophys. Space Sci. 35, 23 (1975).
  7. E. Pian et al., ApJ 536, 778 (2000), arXiv: astro-ph/9910235.
  8. T. J. Galama et al., Nature 395, 670 (1998), arXiv: astro-ph/9806175.
  9. J. Hjorth and J. S. Bloom, ArXiv e-prints (2011), 1104.2274.
  10. K. Nomoto et al., Phys. Rep 163, 13 (1988).
  11. K. Nomoto et al., Nature 371, 227 (1994).
  12. K. Iwamoto et al., ApJ 437, L115 (1994).
  13. R. Ruffini et al., in The Eleventh Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, edited by H. Kleinert, R. T. Jantzen, and R. Ruffini (2008), pp. 368–505, 0804.2837.
  14. J. A. Rueda and R. Ruffini, ApJ 758, L7 (2012).
  15. L. Izzo, J. A. Rueda, and R. Ruffini, A& A 548, L5 (2012a), 1206.2887.
  16. A. Damineli et al., ApJL 528, L101 (2000), astro-ph/9912387.
  17. E. Schreier et al., ApJ 172, L79 (1972).
  18. R. E. Wilson, ApJ 174, L27 (1972).
  19. H. Tananbaum et al., ApJ 174, L143 (1972).
  20. R.W. Leach and R. Ruffini, ApJ 180, L15 (1973).
  21. K. Davidson and J. P. Ostriker, ApJ 179, 585 (1973).
  22. M. L. Rawls et al., ApJ 730, 25 (2011), 1101.2465.
  23. C. L. Fryer, S. E. Woosley, and D. H. Hartmann, ApJ 526, 152 (1999), astro-ph/9904122.
  24. L. Izzo et al., A& A 543, A10 (2012b), 1202.4374.
  25. L. Izzo et al., A& A 543, A10 (2012c), 1202.4374.
  26. A. V. Penacchioni et al., A& A 538, A58 (2012), 1112.2970.
  27. A. V. Penacchioni et al., A& A 551, A133 (2013), 1301.6014.
  28. R. Ruffini et al., ArXiv: 1311.7432.
  29. R. Belvedere et al., Nuclear Physics A 883, 1 (2012), 1202.6500.
  30. R. Ruffini, G. Vereshchagin, and S.-S. Xue, Phys. Rep. 487, 1 (2010), 0910.0974.
  31. K. L. Page et al., MNRAS 416, 2078 (2011).
  32. D. Arnett, Book Review: Supernovae and nucleosynthesis: an investigation of the history of matter, from the big bang to the present, Space Science Reviews 78, 559 (1996).
  33. Z. Cano et al., MNRAS 413, 669 (2011), 1012.1466.
  34. G. B. Pisani et al., A& A 552, L5 (2013), 1304.1764.
  35. D. Xu et al., GRB Coordinates Network 14478, 1 (2013a).
  36. H. Flores et al., GRB Coordinates Network 14491, 1 (2013).
  37. A. de Ugarte Postigo et al., GCN 14646, 1 (2013).
  38. A. J. Levan et al., GRB Coordinates Network 14686, 1 (2013).
  39. A. M. Watson et al., GRB Coordinates Network 14666, 1 (2013).
  40. D. Xu et al., GRB Coordinates Network 14597, 1 (2013b).
  41. J.S. Bloom, D. A. Perley, and H.W. Chen, GCNCirc. 5826 (2006).
  42. C. Kouveliotou et al., ApJl 779, L1 (2013), 1311.5245.
  43. D. A. Perley et al., ApJ 781, 37 (2014), 1307.4401.
  44. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Reviews of Modern Physics 29, 547 (1957).
  45. L.-X. Li and B. Paczyński, ApJl 507, L59 (1998), astro-ph/9807272.
  46. H.-T. Janka, T. Eberl, M. Ruffert, and C. L. Fryer, ApJl 527, L39 (1999), astro-ph/9908290.
  47. S. Rosswog, R. Speith, and G. A. Wynn, MNRAS 351, 1121 (2004), astro-ph/0403500.
  48. R. Oechslin, H.-T. Janka, and A. Marek, A& A 467, 395 (2007), astro-ph/0611047.
  49. S. Goriely, A. Bauswein, and H.-T. Janka, ApJl 738, L32 (2011), 1107.0899.
  50. T. Piran, O. Korobkin, and S. Rosswog, arXiv: 1401.2166 (2014), 1401.2166.
  51. W. D. Arnett, ApJ 253, 785 (1982).
  52. B. D. Metzger et al., MNRAS 406, 2650 (2010), 1001.5029.
  53. S. E. Woosley, ApJ 405, 273 (1993).
  54. A. I. MacFadyen and S. E. Woosley, ApJ 524, 262 (1999), astro-ph/9810274.
  55. S. E. Woosley and J. S. Bloom, ARA& A 44, 507 (2006), astro-ph/0609142.
  56. R. Sari, T. Piran, and R. Narayan, ApJl 497, L17 (1998), astro-ph/9712005.
  57. T. Piran, Rev. Mod. Phys. 76, 1143 (2005).
  58. P. Meszaros, Reports on Progress in Physics 69, 2259 (2006), URL http://stacks.iop.org/0034-4885/69/i=8/a=R01.
  59. N. Gehrels, E. Ramirez-Ruiz, and D. B. Fox, ARA& A 47, 567 (2009), 0909.1531.
  60. R. Ruffini, talk presented at the '27th Texas Symposium on Relativistic Astrophysics', Dallas, TX (USA), December 8–13 (2013).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page