Primeval acceleration and bounce conditions within induced gravity

Nils M. Bezares-Roder, Hemwati Nandan1, Hemwati Nandan2, Umananda Dev Goswami3

Abstract

A model of induced gravity with Higgs potential is analyzed for the FLRW cosmology. Conditions of acceleration and signatures for the primeval universe along with inflation are discussed. It is shown that the scalar-field excitations act quintessentially within effective pressure terms for a negative deceleration parameter. A violation of energy conditions and primeval acceleration appear naturally in the present model in view of the notions for inflationary universe with avoidance of the Big Bang singularity.

References

  1. P. Jordan, Nature 164, 637 (1949); C. H. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961); P. G. Bergmann, Int. J. Theor. Phys. 1 (1), 25 (1968); R.V. Wagoner, Phys. Rev. D 1 (12), 3209 (1970).
  2. T. Kaluza, S. Preuss. Akad.Wiss., Berlin 966 (1921); O. Klein, Z. Phys. 37, 895 (1926).
  3. Y. Fujii and K.-I. Maeda, The Scalar-Tensor Theory of Gravitation (Cambridge Univ. Press, Cambridge, 2003).
  4. Y. Fujii, Phys. Rev. D 9, 874 (1974).
  5. A. Zee, Phys. Rev. Lett. 42, 417 (1979).
  6. A. Zee, Phys. Rev. Lett. 44, 703 (1980).
  7. A. A. Starobinsky, J. Exp. Theor. Phys. 30, 172 (1979).
  8. A. Guth, Phys. Rev. D 23, 347 (1981).
  9. A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
  10. A. D. Linde, Phys. Lett. B 108, 389 (1982); ibid., 116, 335 (1982); ibid., 175, 395 (1986).
  11. F. S. Accetta, D. J. Zoller and M. S. Turner, Phys. Rev. D 31, 3046 (1985).
  12. M. D. Pollock, Nucl. Phys. B 227, 513 (1986).
  13. F. S. Accetta and J. J. Trester, Phys. Rev. D 39, 2854 (1989).
  14. R. Fakir and W. G. Unruh, Phys. Rev. D 41, 1792 (1990).
  15. J. L. Cervantes-Cota and H. Dehnen, Phys. Rev. D 51, 395 (1995).
  16. J. L. Cervantes-Cota and H. Dehnen, Nucl. Phys. B 442, 391 (1995).
  17. H. Dehnen and F. Frommert, Int. J. Theor. Phys. 29, 537 (1990).
  18. H. Dehnen and H. Frommert, Int. J. Theor. Phys. 30, 985 (1991).
  19. N. M. Bezares-Roder and H. Nandan, Ind. J. Phys. 82, 69 (2008); hep-ph/0603168.
  20. H. Dehnen and H. Frommert, Int. J. Theor. Phys. 31, 109 (1992).
  21. H. Dehnen and H. Frommert, Int. J. Theor. Phys. 32, 1135 (1993).
  22. J. J. van der Bij, Acta Phys. Pol. B 25, 827 (1994).
  23. E. Gessner, Astrophys. and Space Sci. 196, 29 (1992).
  24. J. L. Cervantes-Cota, M. A. Rodríguez-Meza and D. Núñez, J. Phys. Conf. Ser. 91, 012007 (2007).
  25. N. M. Bezares-Roder and H. Dehnen, Gen. Rel.Grav. 39, 1259 (2007); arXiv: 0801.4842.
  26. N. M. Bezares-Roder, H. Nandan, and H. Dehnen, JHEP 10, 113 (2010); arXiv: 0912.4039.
  27. N. M. Bezares-Roder, H. Nandan, and H. Dehnen, Int. J. Theor. Phys. 46, 2420 (2007); gr-qc/0609125.
  28. H. Nandan, N. M. Bezares-Roder, and H. Dehnen, Class.Quantum Grav. 27, 245003; arXiv: 0912.4036.
  29. N. M. Bezares-Roder and F. Steiner, Scalar-tensor theory of gravity with a Higgs potential, in: Mathematical Analysis of Evolution, Information and Complexity (Eds. W. Arendt and W. Schleich, Wiley-VCH, Berlin, 2009).
  30. N. M. Bezares Roder, Gravity, Mass, and Quanta (SVH, Saarbrücken, 2010).
  31. B. S. DeWitt, The formal structure of quantum gravity, in: Recent Developments in Gravitation (M. Levy and S. Deser, eds., PlenumPress, New York, 1979), p. 300.
  32. H. Frommert, Higgsmechanismus und Gravitation (Dissertation, Konstanz, 1991).
  33. J. J. van der Bij, Freiburg-THEP 99/09 (1999). Presented at the EPS-HEP999 meeting, July 1999, Tampere, Finland.
  34. J. L. Cervantes-Cota, M. A. Rodríguez-Meza, R. Gabbasov, and J. Klapp, Rev. Mex. Fís. S 53(4), 22 (2007).
  35. C. Wetterich, Nucl. Phys. B 302, 668 (1988).
  36. Y. Fujii, Phys. Rev. D 62, 044011 (2000).
  37. J.-A. Gu, W.-Y. P. Hwang and J.-W. Tsai, Nucl. Phys. B 700, 313 (2004); gr-qc/0403641.
  38. A. G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al. (SCP), Nature 391, 51 (1998); P. M. Garnavich et al., Astrophys. J. 493, L53 (1998).
  39. E. Poisson, A Relativist's Toolkit: The Mathematics of Black HoleMechanics (Cambridge University Press, Cambridge, 2004).
  40. R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984).
  41. M. Morris, K. Thorne, and U. Yurtserver, Am. J. Phys. 61, 1446 (1988).
  42. R. Penrose, Phys. Rev. Lett. 14, 57 (1965); S. Hawking and G. Ellis, Astrophys. J. 152, 25 (1968).
  43. H. Dehnen and H. Hönl, Astroph. Space Sci. 33, 49 (1975).
  44. G. Hinshaw et al., Astroph. J. Suppl. 180, 225 (2009).
  45. G. Lemaítre, Annales Soc. Sci. Brux. Ser. A 53(1), 51 (1933).
  46. A. A. Starobinsky, Sov. Astron. Lett. 4, 82 (1978).
  47. V. N. Melnikov and S. V. Orlov, Phys. Lett. A 70, 263 (1979).
  48. J. K. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D 64, 123522 (2001); ibid., 65, 087007 (2002).
  49. P. J. Steinhardt and N. Turok, Science 296, 1436 (2002); Phys. Rev. D 65, 126003 (2002).
  50. J. M. Alimi, V. D. Ivashchuk, and V. N. Melnikov, Grav. Cosmol. 11, 111 (2005).
  51. P. H. Frampton, astro-ph/0612243.
  52. R. Penrose, Proc. EPAC Edinburgh 2759 (2006).
  53. L. Baum and P. H. Frampton, Phys. Rev. Lett. 98, 07301 (2007); Mod. Phys. Lett. A 23, 33 (2008).
  54. F. T. Falciano, M. Lilley, and P. Peter, Phys. Rev.D 77, 083513 (2008).
  55. V. Dzhunshaliev, K. Myrzakulov and R. Myrzakulov, arXiv: 0907.5265; arXiv: 0911.5195.
  56. R. Brandenberger, Phys. Rev. D 80, 043516 (2009).
  57. E. Czuchry, arXiv: 1008.3410.
  58. X. Gao, Y. Wang, and R. Brandenberger, JCAP 02, 020 (2010).
  59. K.-I. Maeda, Y. Misonoh, and T. Kobayashi, Phys. Rev. D 82, 064024 (2010).
  60. G. Date and G. M. Hossain, Phys. Rev. Lett. 94, 011301 and 011302 (2005).
  61. M. Bojowald, Nature Science 3, 523 (2007).
  62. A. Ashtekar, A. Corichi, and P. Singh, Phys. Rev. D 77, 024046 (2008).
  63. J. Mielczarek, T. Stachowiak, and M. SzydŁowski, Phys. Rev. D 77, 123506 (2008).
  64. R. Helling, arXiv: 0912.3011.
  65. A. Ashtekar and D. Sloan, arXiv: 0912.4093.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page