Inhomogeneous universe in f(T) theory

Manuel E. Rodrigues, M.Hamani Daouda1, Manuel E. Rodrigues2, Manuel E. Rodrigues3, M.Hamani Daouda4, M.J.S. Houndjo5, M.J.S. Houndjo6, M.J.S. Houndjo7, Ratbay Myrzakulov8, Muhammad Sharif9

Abstract

We obtain the equations of motions of the f(T) theory considering the Lemaitre-Tolman-Bondi's metric for a set of diagonal and non-diagonal tetrads. In the case of diagonal tetrads, the equations of motion of the f(T) theory impose a constant torsion or the same equations as in general relativity (GR), while in the case of a non-diagonal set, the equations are quite different from that obtained in GR. We show a simple example of a universe dominated by matter for the two cases. The comparison of the masses in the non-diagonal case shows a sort of increase with respect to the diagonal case. We also find two examples for the non-diagonal case. The first one concerns a Schwarzschild-type black hole solution, which presents a temperature higher than that of Schwarzschild, and a black hole in a dust-dominated universe.

References

  1. S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011); ECONF C 0602061:06, (2006); Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007).
  2. S. Capozziello and V. Faraoni, Beyond Einstein Gravity. A Survey of Gravitational Theories for Cosmology and Astrophysics, Series: Fundamental Theories of Physics, Vol. 170, Springer, New York (2011).
  3. G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S. Zerbini, Phys. Rev. D 73, 084007 (2006).
  4. S. D. Odintsov, T. Harko, F. S. N. Lobo, and S. Nojiri, Phys. Rev. D 84, 024020 (2011).
  5. I. Antoniadis, J. Rizos, and K. Tamvakis, Nucl. Phys. B 415, 497 (1994).
  6. V. C. de Andrade, L. C. T. Guillen, and J. G. Pereira, gr-qc/0011087.
  7. M. H. Daouda, M. E. Rodrigues, and M. J. S. Houndjo, Eur. Phys. J. C 72, 1890 (2012), arXiv: 1109.0528.
  8. J. Yang, Y.-L. Li, Y. Zhong, and Y. Li, arXiv: 1202.0129.
  9. K. Karami and A. Abdolmaleki, arXiv: 1201.2511.
  10. K. Atazadeh and F. Darabi, arXiv: 1112.2824.
  11. H. Wei, X.-J. Guo, and L.-F. Wang, Phys. Lett. B 707, 298 (2012).
  12. K. Karami and A. Abdolmaleki, arXiv: 1111.7269.
  13. P. A. Gonzalez, E. N. Saridakis, and Y. Vasquez, arXiv: 1110.4024.
  14. S. Capozziello, V. F. Cardone, H. Farajollahi, and A. Ravanpak, Phys. Rev. D 84, 043527 (2011).
  15. R.-X. Miao, M. Li, and Y.-G. Miao, arXiv: 1107.0515.
  16. Xin-he Meng and Y.-b. Wang, Eur. Phys. J. C 71, 1755 (2011).
  17. H. Wei, X.-P. Ma, and H.-Y. Qi, Phys. Lett. B 703, 74 (2011).
  18. M. Li, R.-X. Miao, and Y.-G. Miao, JHEP 1107, 108 (2011).
  19. S. Chattopadhyay and U. Debnath, Int. J. Mod. Phys. D 20, 1135 (2011).
  20. P. B. Khatua, S. Chakraborty, and U. Debnath, arXiv: 1105.3393.
  21. Y.-F. Cai, S.-H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis, Class. Quantum Grav. 28, 215011 (2011).
  22. R.-J. Yang, Europhys. Lett. 93, 60001 (2011).
  23. C. G. Boehmer, A. Mussa, and N. Tamanini, Class. Quantum Grav. 28, 245020 (2011).
  24. R. Ferraro and F. Fiorini, Phys. Rev. D 75, 084031 (2007).
  25. G. Bengochea and R. Ferraro, Phys. Rev. D 79, 124019 (2009).
  26. E. V. Linder, Phys. Rev. D 81, 127301 (2010).
  27. B. Li, T. P. Sotiriou, and J. D. Barrow, Phys. Rev. D 83, 104017 (2011).
  28. S.-H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis, Phys. Rev. D 83, 023508 (2011).
  29. T. Wang, Phys. Rev. D 84, 024042 (2011).
  30. L. Iorio and E. N. Saridakis, arXiv: 1203.5781.
  31. H. Dong,Y.-b. Wang, and X.-he Meng, arXiv: 1203.5890.
  32. M. E. Rodrigues, M. J. S. Houndjo, D. Saez-Gomez, and F. Rahaman, Phys. Rev. D 86, 104059 (2012), arXiv:1209.4859.
  33. M. E. Rodrigues, M. J. S. Houndjo, D. Momeni, and R. Myrzakulov, Int. J. Mod. Phys. D 22, 1350043 (2013), arXiv: 1302.4372.
  34. M. J. S.Houndjo, D. Momeni, R. Myrzakulov, and M. E. Rodrigues, arXiv: 1304.1147.
  35. M. E. Rodrigues, M. J. S. Houndjo, J. Tossa, D. Momeni, and R. Myrzakulov, JCAP 11, 024 (2013), arXiv: 1306.2280.
  36. I. G. Salako, M. E. Rodrigues, A. V. Kpadonou, M. J. S. Houndjo, and J. Tossa, JCAP 060, 1475 (2013), arXiv: 1307.0730.
  37. M. E. Rodrigues, I. G. Salako, M. J. S. Houndjo, and J. Tossa, Int. J. Mod. Phys. D 23, 1450004 (2014), arXiv: 1308.2962.
  38. R. Myrzakulov, Eur. Phys. J. C 71, 1752 (2011).
  39. K. K. Yerzhanov, Sh. R. Myrzakul, I. I. Kulnazarov, and R. Myrzakulov, arXiv: 1006.3879.
  40. R. Myrzakulov, Gen. Rel. Grav. 44, 3059 (2012).
  41. K. Bamba, R. Myrzakulov, S. Nojiri, and S. D. Odintsov, Phys. Rev. D 85, 104036 (2012).
  42. M. Jamil, D. Momeni, and R. Myrzakulov, Eur. Phys. J. C 72, 1959 (2012).
  43. K. Bamba, M. Jamil, D. Momeni, and R. Myrzakulov, arXiv: 1202.6114.
  44. R. Myrzakulov, arXiv: 1205.5266.
  45. M. J. S. Houndjo, D. Momeni, and R. Myrzakulov, arXiv: 1206.3938.
  46. R. Myrzakulov, Eur. Phys. J. C 72, 2203 (2012).
  47. M. Jamil, K. R. Yesmakhanova, D. Momeni, and R. Myrzakulov, Cent. Eur. J. Phys., 10, 1065 (2012).
  48. M. Jamil, D. Momeni, and R. Myrzakulov, Eur. Phys. J. C 72, 2075 (2012).
  49. 72, 2122 (2012).
  50. 72, 2137 (2012).
  51. M. Sharif, S. Rani, and R. Myrzakulov, arXiv: 1210.2714.
  52. M. Jamil, D. Momeni, R. Myrzakulov, and P. J. Rudra, Phys. Soc. Jpn. 81, 114004 (2012).
  53. M. Jamil, D. Momeni, and R. Myrzakulov, arXiv: 1211.3740.
  54. M. Jamil, D. Momeni, and R. Myrzakulov, Generalized Teleparallel Gravities. Resolution of Dark Energy and Dark Matter Problems (LAP, Lam[bert Academic Publishing, 2012).
  55. R. Myrzakulov, Entropy 14, 1627 (2012).
  56. A. Krasinski, Inhomogeneous Cosmological Models (Cambridge: Cambridge University Press, 1997).
  57. K. Bolejko, A. Krasinski, C. Hellaby, and M. N. Celerier, Structures in the Universe by Exact Methods: Formation, Evolution, Interactions (Cambridge: Cambridge University Press, 2009).
  58. G. Lema÷?tre, Ann. Soc. Sci. Bruxelles A 53, 51 (1933) (English translation, with historical comments: Gen. Rel. Grav. 29, 641 (1997)); R. C. Tolman, Proc. Nat. Acad. Sci. USA 20, 169 (1934) (reprinted, with historical comments: Gen. Rel. Grav. 29, 935 (1997)).
  59. J. P. Uzan, C. Clarkson and G. F. R. Ellis, Phys. Rev. Lett. 100, 191303 (2008); M. E. Ara÷?jo and W. R. Stoeger, Phys. Rev. D 80, 123517 (2009).
  60. S. Alexander, T. Biswas, A. Notari, and D. Vaid, JCAP 09, 025 (2009).
  61. C. Clarkson and M. Regis, JCAP 02, 013 (2011).
  62. A. Moss, J. P. Zibin, and D. Scott, Phys. Rev. D 83, 103515 (year?).
  63. M. Regis and C. Clarkson, arXiv: 1003.1043.
  64. W. Valkenburg, JCAP 06, 010 (2009).
  65. J. P. Zibin, A. Moss and D. Scott, Phys. Rev. Lett. 101, 251303 (2008).
  66. M. N. Celerier, Astron. Astrophys. 353, 63 (2000).
  67. H. Iguchi, T. Nakamura, and K. Nakao, Progr. Theor. Phys. 108, 809 (2002).
  68. H. Alnes, M. Amarzguioui and O. Gron, Phys. Rev. D 73, 08351 (2006).
  69. D. J. H. Chung and A. E. Romano, Phys. Rev. D 74, 103507 (2006).
  70. H. Alnes and M. Amarzguioui, Phys. Rev. D 75, 023506 (2007).
  71. T. Biswas, R. Mansouri, and A. Notari, JCAP 12, 017 (2007).
  72. N. Brouzakis, N. Tetradis, and E. Tzavara, JCAP 02, 013 (2007), JCAP 04, 008 (2008).
  73. K. Bolejko, PMC Phys. A 2, 1 (2008).
  74. T. Biswas and A. Notari, JCAP 06, 021 (2008).
  75. T. Clifton, P. G. Ferreira, and K. Land, Phys. Rev. Lett. 101, 131302 (2008).
  76. K. Enqvist, Gen. Rel. Grav. 40, 451 (2008).
  77. K. Enqvist and T. Mattsson, JCAP 02, 019 (2007).
  78. V. Marra, E. W. Kolb, and S. Matarrese, Phys. Rev. D 77, 023003 (2008).
  79. V. Marra, E. W. Kolb, S. Matarrese, and A. Riotto, Phys. Rev. D 76, 123004 (2007).
  80. T. Buchert, Class. Quantum Grav. 28, 164007 (2011); S. Rasanen, Class. Quantum Grav. 28, 164008 (2011); D. L. Wiltshire, Class. Quantum Grav. 28, 164006 (2011).
  81. J. T. Firouzjaee and R. Mansouri, Gen. Rel. Grav. 42, 2431 (2010); A. Krasinski and C. Hellaby, Phys. Rev. D 69, 043502 (2004).
  82. A. Krasinski and C. Hellaby, Phys. Rev. D 65, 023501 (2002); Phys. Rev. D 69, 023502 (2004).
  83. K. Bolejko and C. Hellaby, Gen. Rel. Grav. 40, 1771 (2008).
  84. K. Bolejko, A. Krasinski, and C. Hellaby, Mon. Not. R. Astron. Soc. 362, 213 (2005).
  85. M. Bojowald, T. Harada, and R. Tibrewala, Phys. Rev. D 78, 064057 (2008).
  86. B. Li, T. P. Sotiriou, and J. D. Barrow, Phys. Rev. D 83, 064035 (2011), arXiv: 1010.1041; T. P. Sotiriou, B. Li, and J. D. Barrow, Phys. Rev. D 83 104030 (2011), arXiv: 1012.4039.
  87. N. Tamanini and C. G. Boehmer, Phys. Rev. D 86, 044009 (2012); arXiv: 1204.4593.
  88. H. Bondi, Mon. Not. R. Astron. Soc. 107, 410 (1947).
  89. M. H. Daouda, M. E. Rodrigues, and M. J. S. Houndjo, Eur. Phys. J. C 71, 1817 (2011); arXiv: 1108.2920.
  90. J. Grande and L. Perivolaropoulos, Phys. Rev. D 84, 023514 (2011), arXiv: 1103.4143.
  91. B. Li, T. P. Sotiriou, and J. D. Barrow, Phys. Rev. D 83, 064035 (2011), arXiv: 1010.1041.
  92. C. Gao, X. Chen, Y.-G. Shen, and V. Faraoni, Phys. Rev. D 84, 104047 (2011), arXiv: 1110.6708.
  93. C. Deliduman and B. Yapiskan, arXiv: 1103.2225.
  94. R. Ferraro and F. Fiorini, Phys. Rev. D 84, 083518 (2011).
  95. H. Alnes and M. Amarzguioui, Phys. Rev. D 74, 103520 (2006); astro-ph/0607334.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page